Who gets what item(s)?

- Economics is all about scarcity
- How do we know who *should* get certain items?
 - Economics usually use Utilitarian SWF: $\sum u_i$
- Assuming no externalities, markets are fantastic.
- But what if markets are morally repugnant?
Examples of Assignment Problems

- Offices
Examples of Assignment Problems

- Offices

- Parking Spaces
Examples of Assignment Problems

- Offices

- Parking Spaces

- Class Seats
Overview - The Assignment Problem

- j agents, and k indivisible objects. Each agent is assigned one object.
- Normally $j \geq k$.
- Agents have a (possibly) different value, v_{jk}, for each object.

Objective: Maximize total welfare of the assignment, $W = \sum v_{jk}$.

- Values are private and unknown to the institutional designer.
- *Ex post* trading is assumed to be infeasible, either due to institutional constraints or high transaction costs.
Economist love auctions.
Economists love auctions.

Countless hours spent on all types of auctions.
Economist love auctions.

Countless hours spent on all types of auctions.

▶ English
Economist love auctions.

Countless hours spent on all types of auctions.

- English
- Dutch
Enter Auctions

- Economist love auctions.
- Countless hours spent on all types of auctions.
 - English
 - Dutch
 - k^{th} price
Enter Auctions

- Economist love auctions.
- Countless hours spent on all types of auctions.
 - English
 - Dutch
 - k^{th} price
- Simple (English) auctions are not perfect and have many problems.
Enter Auctions

- Economist love auctions.
- Countless hours spent on all types of auctions.
 - English
 - Dutch
 - k^{th} price
- Simple (English) auctions are not perfect and have many problems.
- So we come up with other mechanisms for allocations.
Caldara and Porter (2014) design an auction mechanism in which tokens used in auction are traded before auction in a market.

- **Setting:** preferences highly correlated and varied in magnitude.
- **Finding:** little improvement over preference-based assignment.

Several potential problems:

- Uncertainty about whether to buy or sell tokens.
- Uncertainty about the value of a token.
- Need someone on both sides of the trade.
- Market still requires cash transfers.
Our Environment

- We attempt to monetize tokens through costly effort:
 - Value of token pinned down by outside option.
 - One sided acquisition.
Introducing time costs may change concept of efficiency.
Positive Externality Mechanism

- Introducing time costs may change concept of efficiency.
- Important for activity to be socially valuable.

Positive Externality Mechanism (PEM):

\[\text{Benefit}_i = \gamma N - \sum_{j \neq i} e_j \]

\[\gamma \in \{0, 1, 1.5\} \]

Effect on assignment efficiency is unclear.
Positive Externality Mechanism

- Introducing time costs may change concept of efficiency.
- Important for activity to be socially valuable.
- Positive Externality Mechanism (PEM):

\[
Benefit_i = \frac{\gamma}{N-1} \sum_{j \neq i} e_j
\]
Positive Externality Mechanism

- Introducing time costs may change concept of efficiency.
- Important for activity to be socially valuable.
- Positive Externality Mechanism (PEM):

\[\text{Benefit}_i = \frac{\gamma}{N-1} \sum_{j \neq i} e_j \]

- \(\gamma \in \{0, 1, 1.5\} \)
Positive Externality Mechanism

- Introducing time costs may change concept of efficiency.
- Important for activity to be socially valuable.
- Positive Externality Mechanism (PEM):

\[Benefit_i = \frac{\gamma}{N - 1} \sum_{j \neq i} e_j \]

- \(\gamma \in \{0, 1, 1.5\} \)
- effect on assignment efficiency is unclear.
The assignment is fairly efficient (nearly 85%).
Assignment efficiency not impacted by positive externality.
Tokens purchased also not impacted by externality.
Design builds upon Caldara and Porter (2014)
6 participants and 6 items per group.
Medium (0.4) contention only.
Trade off between up to $10 or 4 tokens.
English Auction (DGS)
18 periods with random re-matching between periods.
Paid for 1 randomly selected round.
PEM Multiplier: $\gamma \in \{0, 1, 1.5\}$
MEDIUM CONTENTION

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
<th>Item 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>$24</td>
<td>$11</td>
<td>$10</td>
<td>$11</td>
<td>$9</td>
<td>$3</td>
</tr>
<tr>
<td>Participant 2</td>
<td>$12</td>
<td>$23</td>
<td>$17</td>
<td>$7</td>
<td>$5</td>
<td>$3</td>
</tr>
<tr>
<td>Participant 3</td>
<td>$16</td>
<td>$14</td>
<td>$19</td>
<td>$16</td>
<td>$9</td>
<td>$3</td>
</tr>
<tr>
<td>Participant 4</td>
<td>$21</td>
<td>$17</td>
<td>$10</td>
<td>$18</td>
<td>$9</td>
<td>$5</td>
</tr>
<tr>
<td>Participant 5</td>
<td>$21</td>
<td>$19</td>
<td>$17</td>
<td>$17</td>
<td>$9</td>
<td>$4</td>
</tr>
<tr>
<td>Participant 6</td>
<td>$14</td>
<td>$19</td>
<td>$15</td>
<td>$12</td>
<td>$6</td>
<td>$7</td>
</tr>
</tbody>
</table>

Clearing Price = $12 $12 $8 $8 $0 $0
Effort Interface

Time Remaining: 23

Effort Division

<table>
<thead>
<tr>
<th>Tokens</th>
<th>Cash</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$10.00</td>
</tr>
<tr>
<td>1</td>
<td>$7.50</td>
</tr>
<tr>
<td>2</td>
<td>$5.00</td>
</tr>
<tr>
<td>3</td>
<td>$2.50</td>
</tr>
<tr>
<td>4</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

All other participants receive $0.50 for each token you acquire.

Tokens are used to bid on items. Cash is added directly to your earnings for the period.

Submit

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Value: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 2</td>
<td>Value: 22</td>
</tr>
<tr>
<td>Item 3</td>
<td>Value: 6</td>
</tr>
<tr>
<td>Item 4</td>
<td>Value: 19</td>
</tr>
<tr>
<td>Item 5</td>
<td>Value: 13</td>
</tr>
<tr>
<td>Item 6</td>
<td>Value: 14</td>
</tr>
</tbody>
</table>
English Interface

Time Remaining: 32

Accounting

Tokens: 1

Item 1
Value: 9
Token Price: 0

Item 2
Value: 13
Token Price: 0

Item 3
Value: 9
Token Price: 0

Item 4
Value: 24
Token Price: 0

Item 5
Value: 5
Token Price: 0

Item 6
Value: 12
Token Price: 0

Submit
Session Summary

- 156 subjects recruited at random from ESSL subject pool, only participated once.
- $7 show up payment + incentivized quiz questions (up to $1).
- Sessions lasted roughly 90 minutes.
- Average subject earnings across all treatments were roughly $30.
Hypotheses

1. Assignment efficiency $> \text{baseline (Caldara & Porter 2014)}$
 - more price info, clear token price, one-sided acquisition
2. Average token acquisition is non-decreasing in preference magnitude.
3. Average token acquisition is non-decreasing in γ.

The effect of γ on assignment efficiency is unclear.
Token Acquisition

Group Tokens by Externality

<table>
<thead>
<tr>
<th>Externality</th>
<th>Group Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.07</td>
</tr>
<tr>
<td>1</td>
<td>14.35</td>
</tr>
<tr>
<td>1.5</td>
<td>13.71</td>
</tr>
</tbody>
</table>
Assignment Efficiency

Average Efficiency by Externality

<table>
<thead>
<tr>
<th>Externality</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>86.61</td>
</tr>
<tr>
<td>1</td>
<td>85.90</td>
</tr>
<tr>
<td>1.5</td>
<td>85.17</td>
</tr>
</tbody>
</table>
Successful monetizing tokens with costly effort.

Efficiency of assignment unaffected by positive externality.
 - Overall efficiency increases with positive externality.

Mechanism may be useful for organizations that need to efficiently allocated resources without using cash.
Questions/Comments?