Household Vehicle Choice through an Adoption Perspective

A Theoretical & Simulation-Based Examination

Motivation

- Why look at vehicle ownership, vehicle choice or usage behavior?
 - Forecast vehicle sales
 - Provide guidance for policy planning
 - Policy incentives
 - Taxing
 - Public transportation
 - Predict vehicle/gasoline usage
 - Environmental issues
 - Energy consumption

Objectives

- **Vehicle/Mode Choice**
 - Disaggregate ➔ Adoption
 - Aggregate ➔ Diffusion
- **Vehicle Usage**
 - Fuel consumption

Recent reviews:

- De Jong et al. (2007)
- Potoglou and Kanaroglou (2008)
- De Jong and Kitamura (2009)
 - Aggregate vs disaggregate
 - Dynamic vs static
 - Data requirements
Past Research in Technology Adoption and Diffusion

- **Aggregate Level**
 - Diffusion of technology
 - S-shaped diffusion curve (Rogers 1962, Griliches 1957)
 - Early adoption
 - Takeoff
 - Saturation
 - Decline

- **Imitation Model or Epidemic Model**
 - Innovators vs imitators
 - Role of communication
 - Limitations: homogeneity and lack of theoretical linkages
 - Mansfield (1961), Bass (1969 and 1980) and Mahajan et al. (1990)
 - Ingram and Liu (1999) and Darby and Gately (1999)
 - Threshold Model

- **Threshold Model**
 - Theoretical basis: micro-level behavior
 - Sources of heterogeneity
 - Technology diffusion through dynamic processes
 - Find critical threshold of adoption

- **Disaggregate Level**
 - Vehicle holding model
 - Vehicle transaction model
 - Mannerling and Winston (1985)
 - Train (1986) and Hensher et al. (1992)
 - indirect utility function
 - Limitations:
 - Reliance on revealed preference data
 - Problematic stated preference data
Our Approach – Theoretical Model

- Disaggregate Level (Adoption)
 - Microeconomic basis:
 - Indirect utility function
 - Household utility maximization
- Aggregate Level (Diffusion)
 - Heterogeneity in population:
 - Household income levels
 - Household structure
 - Comfort / quality levels
 - Environmental awareness factor

Household utility $U(x_j, z)$
- Miles traveled (x_j)
- Composite good (z)
- Utility-maximization choice:
 - Jointly optimize
 - Miles traveled on vehicle j (x_j)
 - Vehicle type (j) where $j \in \{1, 2, \ldots, J\}$

Utility Maximization – Miles (x_j)

$$\max_{x_j} U(x_j, z)$$

FOC:
$$\frac{\partial U}{\partial (x_j)} + \frac{\partial U}{\partial (z)} [-e_j] = 0$$

SOC:
$$\frac{\partial^2 U}{\partial (x_j^2)} + \frac{\partial^2 U}{\partial (z) \partial (x_j)} [-e_j] < 0$$

Comparative statics:
$$\frac{dx_j}{de_j} < 0 \quad \frac{dx_j}{dI} > 0 \quad \frac{dx_j}{dF_j} < 0$$

Indirect Utility Function

$$V_j \equiv \max_{x_j} U(x_j, I - F_j - e_j x_j)$$

- I: household income
- F_j: annual fixed cost of owning vehicle type j
- e_j: variable cost per mile traveled

- V_j is a function of income, household characteristics and vehicle specific characteristics

Indirect Utility Illustrated

![Utility Frontier](image)

Aggregation of vehicle demand

$$S_j(t) = T \int_{I^j_c}^{I^j_t+1} g_k(I) dI$$

$$= T[G_t(I^j_{c+1}) - G_t(I^j_c)]$$

where

- $S_j(t)$ is the desired stock of vehicle type j at time t
- $g_k(I)$ is income distribution of population at time t
- $G_t(I) = \int_0^I g_k(I) dI$ is cumulative income distribution of population at time t
- T is the total population size
Aggregate flow demand at time t:

$$Q_j(t) = \frac{\partial S(t)}{\partial t} = S(t)$$

- Actual demand is current desired stock minus previously accumulated stock
- $Q_j(t)$ represents the percentage of adopters of vehicle type j relative to previous period

What determines how many vehicles of each type are demanded in each period?

- Population effect $\left(S(t)^{\frac{1}{2}} \right)$
- Income distribution effect $\left(\frac{\partial G_j(I_t^{t+1})}{\partial t} - \frac{\partial G_j(I_t^t)}{\partial t} \right)$
- Variable cost effect (e_j)
- Fixed cost effect (F_j)

Our Approach – Model Extensions

- Started with:
 $$V_j \equiv \max_{x_j} U(x_j, I - F_j - e_j x_j)$$
- Extensions:
 - Comfort / quality levels q_j
 - Household structures q_{jh}
 - Environmental awareness factor α_j

 Final Specification
 $$V_j \equiv \max_{x_j} U(x_j, q_{jh} x_j, \alpha_j, I - F_j - e_j x_j)$$

Simulation Calibration Data
- Vehicle types
 - New Vehicles (compact, mid to full-size, SUV/minivan, hybrid)
 - Used Vehicles (small, large)
- Vehicle characteristics
 - Annual fixed cost (Edmunds.com)
 - Variable cost (gasoline price: EIA; fuel efficiency: EPA)
 - Comfort/quality parameter (Espey & Nair 2005)
- Household characteristics
 - Income distribution (Current Population Survey from U.S. Census Bureau)
 - Household types (with children, without children or senior households)
Our Approach – Simulation

Simulation Calibration Data

Environmental awareness
1. Without environmental awareness
2. Function of gas prices \(\alpha_j = \frac{\theta_j (1)}{\theta_j (T-1)} \)
3. Surveyed environmental awareness
 (“how much do you personally worry about the ‘greenhouse effect’ or global warming?” Gallup Annual Poll from Nisbet and Myers 2007)

<table>
<thead>
<tr>
<th>Year</th>
<th>Very much (%)</th>
<th>Fair amount (%)</th>
<th>Only a little (%)</th>
<th>Not at all (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>35</td>
<td>20</td>
<td>10</td>
<td>41</td>
</tr>
<tr>
<td>2002</td>
<td>29</td>
<td>29</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>2003</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>2004</td>
<td>29</td>
<td>29</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>2005</td>
<td>21</td>
<td>19</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>2006</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>2007</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

\[
y = 1.1123x - 0.0065 \\
R^2 = 0.949\]

Simulated Values vs. Observed Values

Our Approach – Simulation

No proxy for environmental awareness

Gas price proxy for environmental awareness

Survey proxy for environmental awareness
Our Approach – Simulation
Survey proxy for environmental awareness

Our Approach – Simulation
Sample Simulated Scenarios
- Energy price fluctuations
- Hybrid vehicle price decreases due to learning-by-doing
- Government policy changes
 - Tax incentives for hybrid vehicles
 - Gasoline tax
- Income distribution shifts
- Shape of income distribution changes

Our Approach – Simulation
Energy price change: 1% increase per period

Our Approach – Simulation
Energy price change: 3% increase per period

Our Approach – Simulation
Energy price change: 5% increase per period

Our Approach – Simulation
Energy price change: 10% increase per period
Some observations:
- Adoption of different vehicle technologies due to Variable Cost Effect
- Fewer SUV or large vehicle purchases with small energy price increases, but more with larger price increases
- Large energy price increase ➔ household optimize with less miles traveled
- Elasticity of demand for gas (miles traveled): -0.56 to -0.77
- Marginal utility of comfort/quality becomes more significant in adoption decision as variable cost increases beyond a certain level

Main determinants of adoption:
- Fixed cost of technology
 - Learning-by-doing
 - Policy incentives
- Income distribution shifts / shape changes
- Other determinants of adoption:
 - Variable cost
 - Changes in environmental awareness

Some characteristics:
- High economic growth ➔ income growth
- Rising income inequality ➔ change in shape of income distribution
- Low environmental awareness
- Population growth
- Infrastructure differences
- Public transportation

Energy price increase 5% per period
- Dramatic income distribution shifts (from last slide)
Concluding remarks

- What we've done so far...
 - Theoretical model of adoption & diffusion of vehicles
 - Simulation model based on micro theory
 - Case studies based on calibrated simulations

- Some future research directions...
 - Calibration of simulation model for developing economies taking into account non-motorized methods of travel (by foot ➔ two-wheeled ➔ four-wheeled)
 - Random variable of preferences for comfort or environmental awareness
 - Allocation of decision power within the household