ENGINEERING
What can I do with this degree?

ANY ENGINEERING DISCIPLINE
- Production
- Sales and Marketing
- Management
- Consulting
- Research and Development
- Teaching
- Law

EMPLOYERS
- Industry
- Business
- Federal, state, and local government
- Colleges and universities

DESCRIPTIONS/STRATEGIES
- Obtain related experience through co-op or internships for business/industry-related career.
- MBA degree provides best opportunities in technical management.
- Obtain Ph.D. for optimal teaching and research careers.
- Develop strong verbal and written communication skills.
- Learn federal, state, and local government job application procedures.

AEROSPACE
- Propulsion
- Fluid Mechanics
- Thermodynamics
- Structures
- Celestial Mechanics
- Acoustics
- Guidance and Control

- Aircraft, guided missile, and space vehicle industries
- Communications equipment manufacturers
- Commercial airlines
- Federal government departments:
 - Defense
 - National Aeronautics and Space Administration (NASA)
- Business and engineering firms

- Discipline uses cutting edge technology to deal with challenges of aeronautics, space, mass transportation, environmental pollution, and medical science.
- Keep abreast of status of federal funding for defense and space programs.
- Seek co-op opportunities.
- Develop effective verbal and written communication skills.
- Learn to work well within a team.

BIOSYSTEMS ENGINEERING
- Natural Resources
 - Soil and Water Conservation
- International Consulting
- Environmental Control
- Agricultural Structures
- Power and Machinery
- Electronic Systems
- Food Engineering
- Genetic Engineering
- Engineering Technology

- Technological agricultural industries
- Land grant universities:
 - Experimental farm stations
 - Research laboratories
- Consulting firms
- Equipment design, testing, and manufacturing firms
- Equipment and food industries including processing, packaging, and storing
- Quality control for food, feed, fiber, etc.
- Biotechnology research firms
- Foreign Service

- A broad, basic engineering discipline with a close relationship to the environment, food production, and agricultural productivity.
- Participate in internship or co-op programs.
- Acquire strong computer skills.
- Learn a foreign language for work in foreign service.
- Develop strong math and problem solving skills.
AREAS

<table>
<thead>
<tr>
<th>BIOMEDICAL</th>
<th>CHEMICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering</td>
<td>Administration</td>
</tr>
<tr>
<td>Design</td>
<td>Design and Construction</td>
</tr>
<tr>
<td>Development</td>
<td>Project Engineering</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Control Systems</td>
</tr>
<tr>
<td>Medical Engineering</td>
<td>Field Engineering</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>Process Engineering</td>
</tr>
<tr>
<td>Materials</td>
<td>Operations/Production</td>
</tr>
<tr>
<td>Diagnostic/Therapeutic Devices</td>
<td>Environmental and Waste Management</td>
</tr>
<tr>
<td>Artificial Organs</td>
<td>Development</td>
</tr>
<tr>
<td>Medical Equipment</td>
<td>Design</td>
</tr>
<tr>
<td>Rehabilitation Engineering</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Bio-environmental Engineering</td>
<td>Related to fields above</td>
</tr>
</tbody>
</table>

EMPLOYERS

<table>
<thead>
<tr>
<th>BIOMEDICAL</th>
<th>CHEMICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturers of medical and surgical devices</td>
<td>Independent research institutes</td>
</tr>
<tr>
<td>Hospitals and healthcare facilities</td>
<td>Consulting organizations</td>
</tr>
<tr>
<td>Federal government:</td>
<td>Chemical industry including:</td>
</tr>
<tr>
<td>Regulatory agencies</td>
<td>Agricultural chemicals</td>
</tr>
<tr>
<td>Veteran's Administration</td>
<td>Plastics</td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>Industrial chemicals</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td>Petroleum</td>
</tr>
<tr>
<td>(NASA)</td>
<td>Pharmaceutical</td>
</tr>
<tr>
<td>Industry</td>
<td>Cosmetic</td>
</tr>
<tr>
<td>Research facilities of educational and medical institutions</td>
<td>Food processing</td>
</tr>
<tr>
<td></td>
<td>Atomic energy development</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
</tr>
<tr>
<td></td>
<td>Federal government including:</td>
</tr>
<tr>
<td></td>
<td>Department of Energy</td>
</tr>
<tr>
<td></td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td></td>
<td>Manufacturing plants including automotive, air</td>
</tr>
<tr>
<td></td>
<td>plane, paper, microelectronics, textiles, metals, rubber, food, and beverage</td>
</tr>
</tbody>
</table>

DESCRIPTIONS/STRATEGIES

BIOMEDICAL

- **Bioengineering**
 - Design
 - Development
 - Manufacturing
- **Medical Engineering**
 - Instrumentation
 - Materials
 - Diagnostic/Therapeutic Devices
 - Artificial Organs
 - Medical Equipment
- **Rehabilitation Engineering**
- **Bio-environmental Engineering**

CHEMICAL

- **Administration**
- **Design and Construction**
 - Project Engineering
 - Control Systems
 - Field Engineering
 - Process Engineering
- **Operations/Production**
- **Environmental and Waste Management**
 - Development
 - Design

DISCIPLINES/STRATEGIES

BIOMEDICAL

- Develop strong team work skills.
- Many positions require a graduate or professional degree.
- Serves as a good background for medical school.

CHEMICAL

- Develop exceptional interpersonal skills.
- Acquire technical work experience during college years.
CIVIL

<table>
<thead>
<tr>
<th>AREAS</th>
<th>EMPLOYERS</th>
<th>DESCRIPTIONS/STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural</td>
<td>Construction industry</td>
<td>Broad discipline of "doers" providing service to the community through development and improvement. Works extensively with other professionals involved with the community. Provides opportunity to work outdoors.</td>
</tr>
<tr>
<td>Urban and Community Planning</td>
<td>Engineering or architectural firms</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Utility companies</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>Oil companies</td>
<td></td>
</tr>
<tr>
<td>Water Resources</td>
<td>Telecommunications businesses</td>
<td></td>
</tr>
<tr>
<td>Transportation and Pipeline</td>
<td>Manufacturing companies</td>
<td></td>
</tr>
<tr>
<td>Geotechnical</td>
<td>Consulting firms</td>
<td></td>
</tr>
<tr>
<td>Photogrammetry, Surveying and Mapping</td>
<td>Railroads</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>State and federal government agencies</td>
<td></td>
</tr>
</tbody>
</table>

Learn to work well within a team.
Develop strong communication and interpersonal skills.
Develop physical stamina for outdoor work.
Get experience in organizing and directing workers and materials.
Ability to visualize objects in three dimensions is helpful.
Demand has remained steady due to broad nature of discipline.
States may require licensing or registration.

ELECTRICAL/COMPUTER

<table>
<thead>
<tr>
<th>AREAS</th>
<th>EMPLOYERS</th>
<th>DESCRIPTIONS/STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Electronics</td>
<td>Manufacturing firms and industry including:</td>
<td>A field in touch with a wide and growing range of applications such as high speed and wireless communication, exploration of outer space, and a revolution in medical diagnosis and treatment.</td>
</tr>
<tr>
<td>Power Systems</td>
<td>Aeronautical/Aerospace</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Automotive</td>
<td></td>
</tr>
<tr>
<td>Electronics</td>
<td>Business machines</td>
<td></td>
</tr>
<tr>
<td>Control Systems</td>
<td>Professional and scientific equipment</td>
<td></td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>Consumer products</td>
<td></td>
</tr>
<tr>
<td>Microelectronics</td>
<td>Chemical and petrochemical</td>
<td></td>
</tr>
<tr>
<td>Image Processing & Robotics</td>
<td>Computers</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>Plasma Engineering</td>
<td>Defense</td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td>Electric utilities</td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td>Electronics</td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td>Food and beverage</td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td>Glass, ceramics, and metals</td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td>Machine tools</td>
<td></td>
</tr>
</tbody>
</table>

Develop effective verbal and written communication skills.
Gain experience in team work.
Acquire capacity for details.
Develop interpersonal skills.
Obtain research experience.
AREAS

Electrical/Computer, Continued

Mining and metallurgy
Nuclear
Oceanography
Pulp and paper
Textiles
Transportation
Water and wastewater
Public utilities
Federal government including:
 - Armed forces
 - National Aeronautics and Space Administration (NASA)
 - National Institutes of Health
 - Bureau of Standards
 - Department of Defense
 - Various commissions
Consulting firms
Free-lance consulting

DESCRIPTIONS/STRATEGIES

INDUSTRIAL

Operations Research
Applied Behavioral Science Systems
Manufacturing Management
Information Engineering
Computer Systems Design and Development
Manufacturing industries
Accounting firms
Retail distribution organizations
Banks and financial institutions
Hospitals and healthcare organizations
Educational and public service agencies
Transportation industries
Construction industries
Public utilities
Electrical and electronics machinery industries
Consulting firms

Discipline links management and operations by improving productivity through a “big picture” approach; serves human needs and works with people.

Take courses in psychology, sociology and anthropology to learn more about people and how they behave.
Earn an MBA for advancement in management or administration.
AREAS

MATERIALS SCIENCE AND ENGINEERING
- Metallurgy
- Ceramics
- Plastics/Polymer
- Composites
- Research
- Extractive
- Process
- Applications
- Management
- Sales
- Service
- Consulting

MECHANICAL
- Mechanical Power Generation
 - Internal Combustion Engines
 - Jet Engines
 - Steam Power Plants
 - Rockets
 - Energy Utilization and Conservation
- Thermal/Fluids
 - Thermodynamics
 - Environmental Control
 - Refrigeration
 - Instrumentation and Control
- Machine Sciences
 - Mechanical Design
 - Manufacturing and Production
 - Robotics
 - Operation and Maintenance

EMPLOYERS

Materials producing companies
- Manufacturing companies including automobiles, appliances, electronics, aerospace equipment, machinery, medicine
- Service companies including airlines, railroads, and utilities
- Consulting firms

Government agencies:
- Department of Defense
- National Aeronautics Space Administration (NASA)

Research institutes

Publishers

DESCRIPTIONS/STRATEGIES

Studies properties of various types of materials and how they are made and behave under different conditions.

- Many positions require a graduate degree.
- Some areas benefited by additional study in business administration, medicine, management and/or law.
- Develop good communication skills.
- Gain laboratory and research experience as an undergraduate.

Takes broad outlook on solving complex problems. Involves design, development and production. Keeps pace with technology. Acts as an interface between society and technology.

- Obtain related experience through internships or co-op.
- Take additional courses in area(s) of interest.
- Develop strong interpersonal and communication skills.
AREAS

<table>
<thead>
<tr>
<th>ENVIRONMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
</tr>
<tr>
<td>Planning</td>
</tr>
<tr>
<td>Operations</td>
</tr>
<tr>
<td>Administration</td>
</tr>
<tr>
<td>Regulations</td>
</tr>
</tbody>
</table>

Private industry and businesses involved with air pollution control, industrial hygiene, radiation protection, hazardous waste management, toxic materials control, water supply, storm water and wastewater management, solid waste disposal, public health, and land management

Private engineering consulting firms
Construction firms
Research firms
Testing laboratories
International organizations

EMPLOYERS

NUCLEAR

- Environment and Pollution
- Health
- Space Exploration
- Consumer and Industrial Power
- Food Supply
- Transportation
- Water Supply

Electric and gas utility companies
Guided missile and space vehicle companies
Engineering consulting firms
Business services including medical industry
Manufacturers of nuclear power equipment
Research facilities
Military services
Defense manufacturers

DESCRIPTIONS/STRATEGIES

ENVIRONMENTAL

Discipline plays vital role in reducing toxicity and pollution of water, ground and air for a better quality of life for all living things.

Consider a master's degree for advancement.
Foreign language ability beneficial for international work.

NUCLEAR

Discipline studies basic components of neutrons, protons, electrons and all matter; deals with inanimate substances.

ENGINEERING SCIENCE AND MECHANICS

- Engineering Mechanics
- Biomedical Engineering
- Computational Mechanics
- Engineering Materials

Industry
Manufacturing
Research organizations

Interdisciplinary program with broad training in engineering science, mathematics, and physical or biological science.
GENERAL INFORMATION

• Bachelor’s degree provides wide range of career opportunities in industry, business, and government.
• Graduate degrees offer more opportunities for career advancement.
• Bachelor’s degree is good background for pursuing technical graduate degrees as well as professional degrees in Business Administration, Medicine or Law.
• Related work experience obtained through co-op, internships, part-time or summer jobs, or regular employment is extremely beneficial.
• Develop computer expertise within field.
• Engineers need to think in scientific and mathematical terms, have ability to study data, sort out important facts, solve problems, and be logical thinkers.
 Creativity is useful.
 • Other helpful traits include intellectual curiosity, technical aptitude, perseverance, ability to communicate and work well with others, a commitment to teamwork, and a basic understanding of the economic and environmental context in which engineering is practiced.
• Develop excellent verbal and written communications skills including presentation and technical report writing.
• All states and the District of Columbia require registration of engineers whose work may affect the life, health, or safety of the public.
• Professional or technical societies confer certification in some areas.
• Join related professional organizations.
• Most fields offer overseas opportunities with businesses or government agencies.
• Because of rapid changes in most engineering fields, both continued education and keeping abreast of new developments are very important.
• Most states require an EIT (Engineer-In-Training) test before taking a state examination to become a Professional Engineer (PE).
• Search the Internet for additional information about individual disciplines.