Finite element modeling of localized surface plasmon resonances in nano-antenna structures

Madison Wenzlick
The Renewed Field of Plasmonics

- Plasmon: unit of electron “plasma”
- Have a certain resonance frequency corresponding to their energy
- Can induce a response of these plasmons by laser excitation
- Plasmons amplify the incident electric field at the interface between the metal and the dielectric (air)
- Generally ~100-1000x amplification
The Renewed Field of Plasmonics

- Amplification effect depends on the refractive index of the metal
- Can control the location of the induced amplification by geometry of nanoparticles
- Amplification occurs in localized regions focused past the limit of diffraction
 - \(\sim \frac{\lambda}{20} \) rather than \(\sim \frac{\lambda}{2} \)
- Ability to couple optical signals with electronic transmission
Theoretical Model

- Explore software used to model physical events
- Goal: Compare the results of a software model with the results of a theoretical model
 - Use different numerical method of calculation
- Establishes the software as a valid means of modeling plasmonic phenomena on the nanoscale
 - Provides a valuable initial step to experimentation
COMSOL Multiphysics

- Tailors a general master differential equation to the specific types of physics applied to the model.
- The Radio Frequency (RF) module solves for electromagnetic waves in the medium.
- Evaluates the resulting electric field for a given geometry, set of materials, and frequency of incoming light.
- Solution in the frequency domain: dependent on frequency rather than time.
COMSOL Multiphysics

- Uses the finite element method (FEM)
- Mesh creates triangle and tetrahedral shapes on the geometry, creates finite space
 - Mesh must be fine enough to give accurate results (~\(\lambda/10\)); large enough for reasonable computation time
- Maxwell’s equations are evaluated on the outline of each mesh element, and integrated over the area of the triangle to give a value
- Each value summed to give final solution
COMSOL Model: Nanolens
Model Parameters

- Wavelength of light: 369 nm
- Size of spheres, relative radius ratio: 5, 15, and 45 nm; \(R_{i+1}/R_i = 1/3 \)
- Distance between spheres: \(D_{i,i+1} = 0.6R_{i+1} \)
- Sphere material: silver
- Polarization of light: tranverse electric
- Incidence angle of light: normal
COMSOL Model: Results

COMSOL model result

Stockman result*

COMSOL Model: Results

Increase in Electric Field Intensity for Varied Radii Ratios
Comsol; Stockman

Distance (nm)
Theoretical Model Conclusions

- Results generally matched theory
- However, discrepancies may occur due to internal tolerances within the program; difficulties of obtaining values at sharp peaks
- COMSOL modeling can be used to explore different effects of surface plasmon resonance in nanoparticles.
Modeling Experimental Results: Y Router

- Based on a Y shape fabricated using a focused-ion beam microscope (FIB)
- Single-crystalline gold on indium tin oxide (ITO)
- Analyzed for its “routing” ability: response of surface plasmons changed based on polarization of the light

Modeling Experimental Results: Y Router

- Rounded edges necessary in making the model similar to the experiment; difficult for COMSOL
- Attempted to construct the shape using AutoCAD (computer-aided design)

Goal

Best COMSOL approximation
Future Steps

- Improve the Y Router model in COMSOL
 - Use rounded edges
 - Add glass and indium tin oxide (ITO) layer
- Design new antennas for testing
Acknowledgments

- Dr. Koenenkamp, Dr. Rob Word, Joe Fitzgerald, Zach Peterson
- PSU’s REU program
- National Science Foundation (NSF)
References

Thank you!