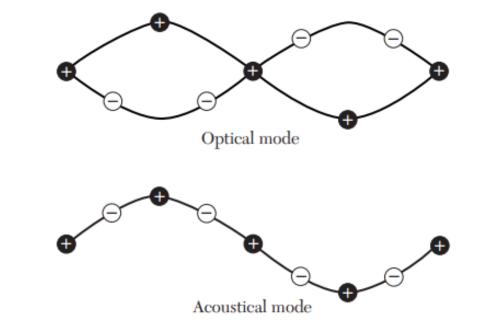
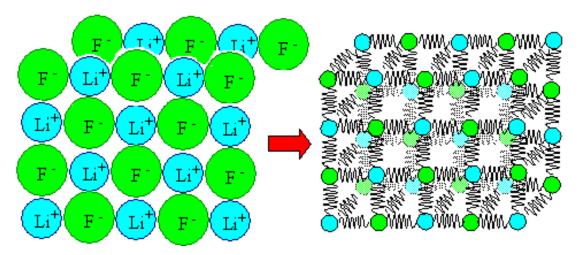

DATA-DRIVEN UNDERSTANDING OF INTERATOMIC INTERACTIONS IN SOLIDS

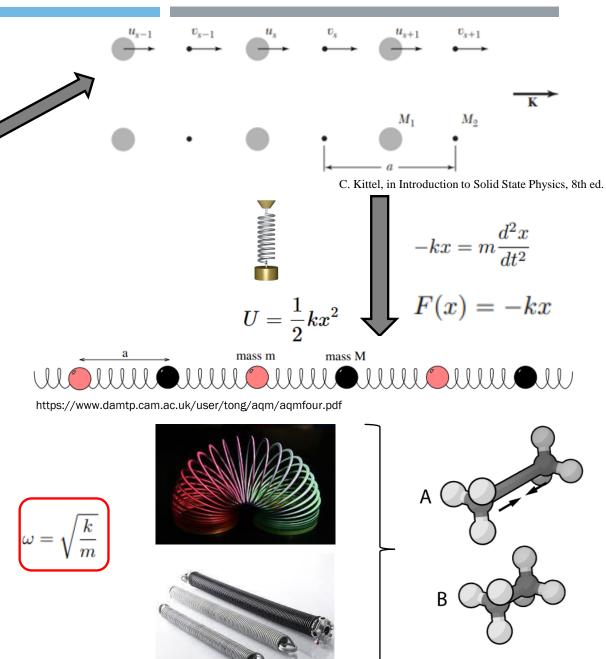

DYLAN SOH AND YI XIA, PHD.

https://news.mit.edu/2010/explained-phonons-0706

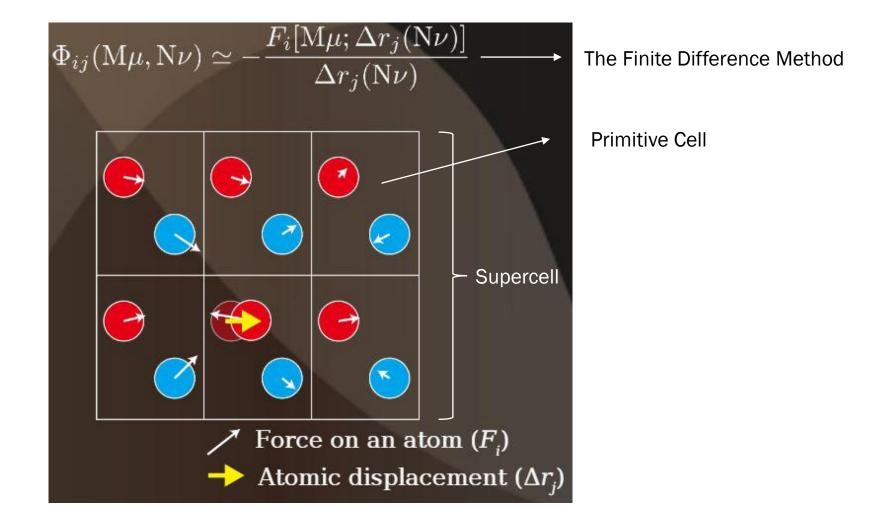
A BRIEF HISTORY OF PHONONS


- Phonons are quantized vibrations within a crystal.
- They correspond to the behavior of heat and sound in lattice systems.

PHONONS TO BONDING STRENGTH

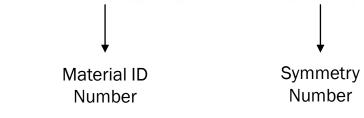

- Bonds between atoms act similar to simple harmonic oscillators:
 - Vibrations between these bonds represent phonons
 - Allows the calculation of force constants between atoms
- Through Hooke's law, force constants are synonymous with bonding strength.
- Although software calculation of force constants is commonplace given a lattice, there's little research on how these force constants depend on distances and elemental properties for many different lattices.

https://www.tf.uni-kiel.de/matwis/amat/iss/kap_4/illustr/s4_1_2.html

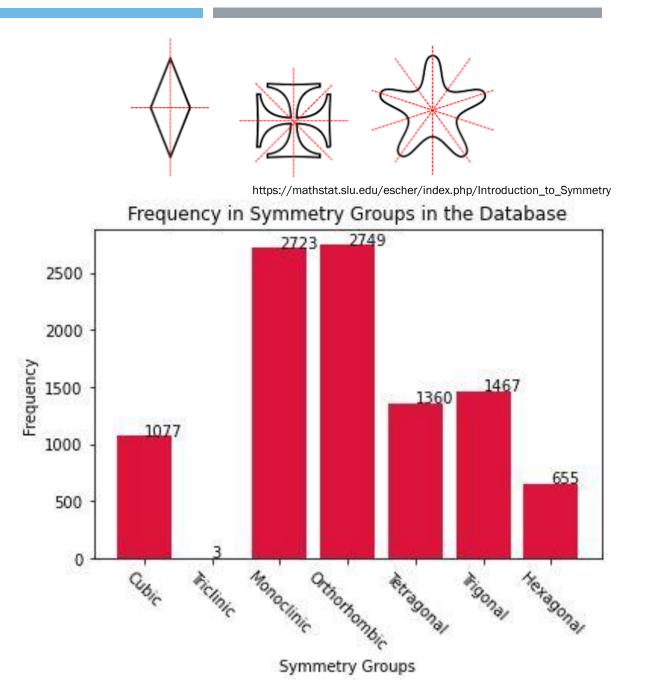

PHONON CALCULATIONS

- Bonds between atoms in a crystal act and are modeled as simple harmonic oscillators (e.g. springs)
- The crystal's potential energy is expanded with respect to the atomic displacements.
- Using classical physics, phonons can be calculated by diagonalizing the harmonic Hamiltonian.
- Computation of all bonds in a lattice as harmonic oscillators are done through computation utilizing DFT and periodic boundary conditions.

Rest of Images cited from Wikipedia


CALCULATE FORCE CONSTANTS FROM PHONOPY

BRIEF INTRO TO THE PHONON DATABASE


- Each compound within the database gives a download link containing the compound's:
 - Unitcell (POSCAR)
 - k-point mesh (KPOINTS)
 - Pseudopotentials & Exchange functionals (POTCAR)
 - Control parameters for Phonopy or VASP (INCAR)

- Materials id 25 / N2 / Pa-3 (205)
- Materials id 39 / Tl / Im-3m (229)
- Materials id 111 / Ne / Fm-3m (225)
- Materials id 147 / Se / R-3 (148)
- Materials id 149 / Si / Fd-3m (227)
- Materials id 154 / N2 / P2_13 (198)
- Materials id 160 / B / R-3m (166)

SPACE GROUPS

- The symmetry number for each compound details the respective numerical index of the corresponding space group that the material is classified in.
- Each numerical index details the usage of different rotational and translational matrices and vectors to create the given lattice defined.
- The space groups can be further divided into subgroups that determine the type of lattice symmetry (Triclinic, trigonal, orthorhombic, cubic, etc...)

FORCE CONSTANTS IN THE FORM OF TRACES

- One major flaw: Multiple rotational-symmetry transformations for each atomic pair impact the atoms' displacement.
- Foreman-Lomer Theorem resolves this by stating that traces of the force constant matrices remain unchanged since the phonon values uniquely determine them.
- These traces represent bond strengths!

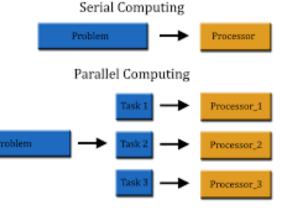
$$tr\left(\begin{bmatrix}5 & 3 & 5\\ 4 & -1 & 2\\ -3 & 8 & 7\end{bmatrix}\right) = 5 - 1 + 7 = 11.$$

TRACE VS. DISTANCE CALCULATIONS OF A SINGLE COMPOUND:

The coordinates detailing each atom's position in the supercell are given in SPOSCAR (one of the outputs of Phonopy).

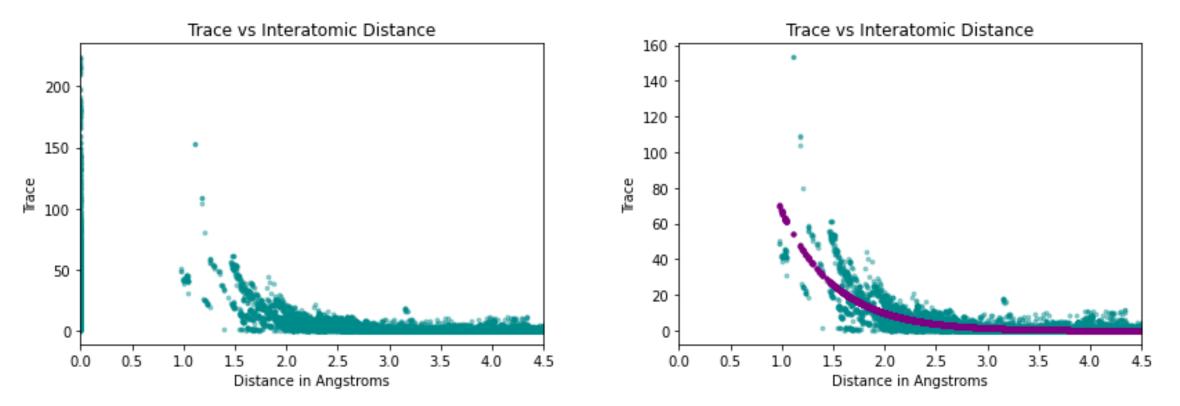
The force constants on the supercell are given in the matrix notation of each atom pair.

SPOSCAR (Supercell):

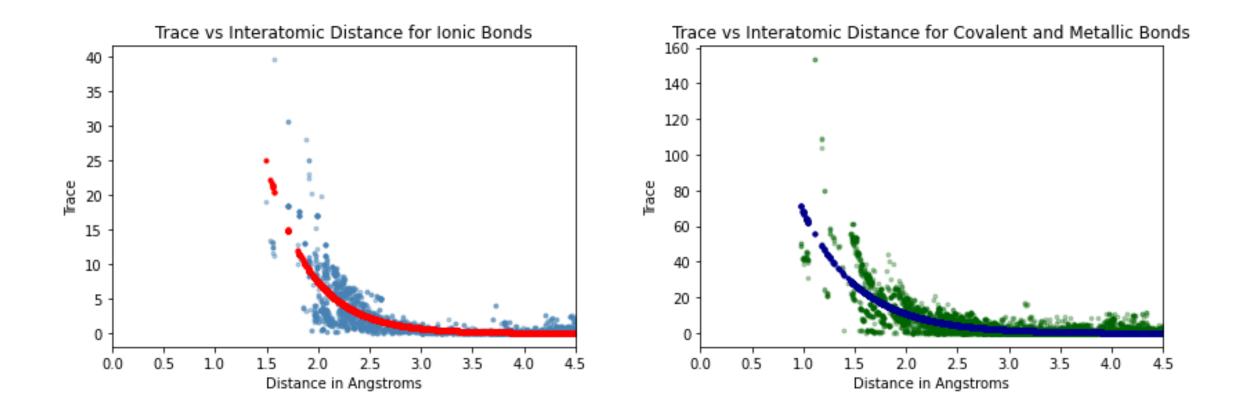

	1000								
DOSCAD (and of	10	generated by phonopy							
POSCAR (one of	2	1.0							
	3	12.084185209999999							
	4	-6.04209183000000							
	10000	5 0.00000000000000 0.00000000000000 17.6977176199999988							
		S TL							
	7	27 54							
	8 Direct								
	9	0.342757060000000	0.0096004200000000	0.313240910000000> Atom 1 Position					
	10	0.666843360000000	0.6572429399999999	0.3132409100000000> Atom 2 Position					
	11	0.9903995799999999	0.3331566400000000	0.313240910000000> Atom 3 Position					
	12	0.3420215500000000	0.3432314300000000	0.0274373900000000					
	FC	DRCE_CONSTANTS:							
percell are given	1	81 81							
	21	1							
atom pair.	3	3.338608993564256	-0.0883177327192	-0.169763007726184					
	4	-0.088375828417551	3.6703074649811	50 -0.106096182347630> Matrix					
	5	-0.169546500000000	-0.1057015000000	3.03974650000001					
	61	2							
	7/	-0.036068500433537	0.0125524968175	80 -0.023802499901175					
	B	-0.005953344647274	-0.0437010861561	14 0.001357063556748					
	9	0.009184500000000	-0.0091095000000						
	10 1								
	11	-0.038941999686435	-0.0142015029731	25 0.003277000910548					
×	17	0.004305881168271	-0.0408270345507						
Atom 1 & Atom 2 Pair	13	0.01070850000000	-0.0212940000000						
	14 1								
	15	-0.023626496438090	0.0573610013308	62 -0.061611497344097					
	16	0.048912250497742	0.0182754411975						
Atom 1 & Atom 3 Pair	17	-0.059592500000000	0.0669815000000						
	-								

BRIDGES-2 SUPERCOMPUTER

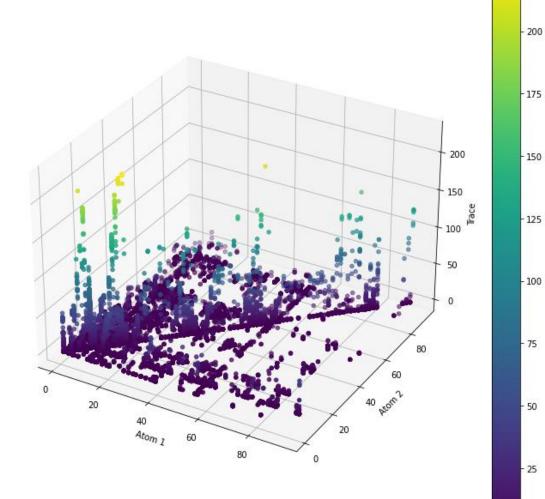
- Used supercomputer for data analysis calculations
- Simply create a bash script and paste in code and parameters to use the supercomputer.
- Utilize parallel computing for faster computation times throughout.
- Out of over 10034 compounds from the database, over 1077 cubic compounds extracted and 2774451 bonds analyzed.
- Through symmetry analysis using the supercomputer, 103181 bonds were used for results.

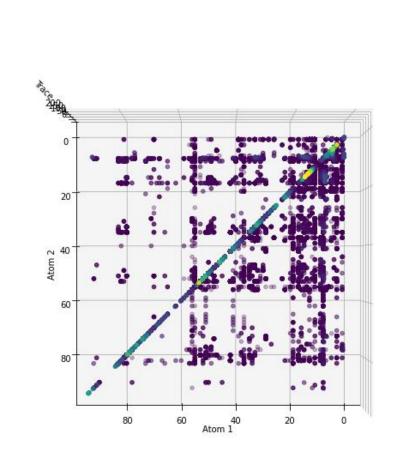


https://www.hpcwire.com/off-the-wire/bridges-2-begins-production-operations/



https://www.teldat.com/blog/parallel-computing-bit-instruction-task-level-parallelism-multicore-computers/


BOND DISTANCE VS. BOND STRENGTH FOR ALL CUBIC COMPOUNDS

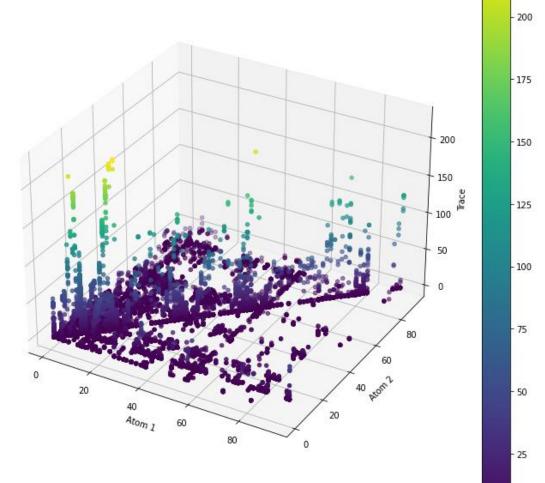


IONIC AND COVALENT-METALLIC BONDS

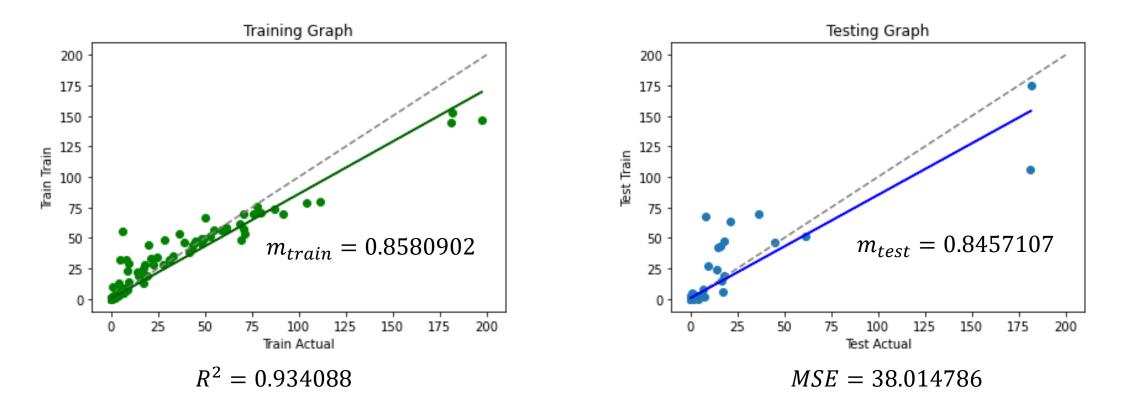
BOND STRENGTH VS. ATOMIC NUMBERS

- 200 - 175 - 150 - 125 - 100 - 75 - 50 - 25

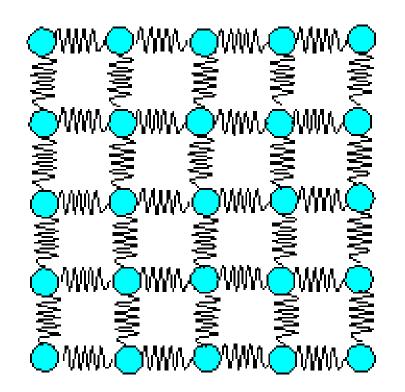
· 0


COMPARISON OF PREVIOUS FORCE CONSTANTS RESEARCH

						HH
	LiLi	BB	CC	NN	00	5.76 FF
Single bond : Double bond : Triple bond :	0.147; 0.255	1.835; 2.65	3.4; 4.5; 4.9; 6.6 9.6 15.8	$\begin{array}{r} 4.73 \\ 9.46 \\ 14.19 \\ (22.962) \end{array}$	5.84 11.765 17.90	4.453; 7.14
	NaNa	AIAI	SiSi	PP	SS	CICI
Single bond : Double bond : Triple bond :	0.106; 0.172	0.27	1.0; 1.42	1.852 3.704 5.556	2.69 4.96 7.23	3.286
	KK	GaGa	GeGe	AsAs	SeSe	BrBr
Single bond : Double bond : Triple bond :	0.054; 0.099	0.24	0.80; 1.29	1.356 2.712 4.068	1.91 3.61 5.31	2.458
	RbRb	InIn	SnSn	SbSb	TeTe	II
Single bond : Double bond : Triple bond :	0.046; 0.082	0.15	0.33; 0.57	0.87 1.74 2.61	1.25 2.368 3.49	1.72
	CsCs	TITI	PbPb	BiBi		
Single bond : Double bond : Triple bond :	0.038; 0.069	0.10	0.31	0.44 1.836	1448 · · · · · · · · · · · · · · · · · ·	


TABLE XIV. Force constants of covalent bonds.^a

About force constants for the single bonds: For alkali metals two values have been recorded for the single bonds; the lower value corresponding to s-s bond and the higher value to s-p bond. The lower value for BB corresponds to p-p bond while the higher value corresponds to sp²-sp² bond. The single bond force constants of AlAI, GaGa, InIn, and TITI correspond to p-p bonds. Under CC four values have been recorded for the single bonds. They correspond in order of magnitude to p-p, tetrahedral, trigonal, and digonal bonds. For SiSi, GeGe, and SnSn the lower value corresponds to p-p bond while the higher value corresponds to tetrahedral bond. The single bond force constants of NN, PP, AsAs, SbSb, BiBi, OO, SS, SeSe, TeTe, CICI, BrBr, II correspond to p-p bonds. The p-p bond force constant of FF has not been ascertained.



MACHINE-LEARNING MODEL

SUMMARY

- Calculating phonon frequencies in many cubic compounds enables one to understand bond strengths, representing traces of the force constant matrices within solids.
- Data optimization shows the simple physics that relates distance to bond strength.
- Analysis of elemental properties lines up with previous research on the force constants on bonds with the same element.
- As with machine learning, the model can fit and potentially predict bond strengths.

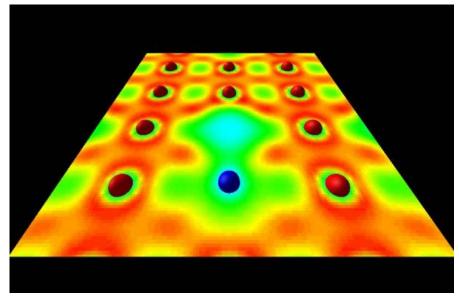
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_4/backbone/r4_1_3.html

TAKEAWAYS AND FUTURE EFFORTS

- One should add new information to or clean the dataset to improve model efficiency
- Expand to other space groups for more data and check to see if the model can predict the traces from these groups.
- For the three-dimensional plots, ignore traces with zero distance.
- Revise all code for unforeseeable errors.

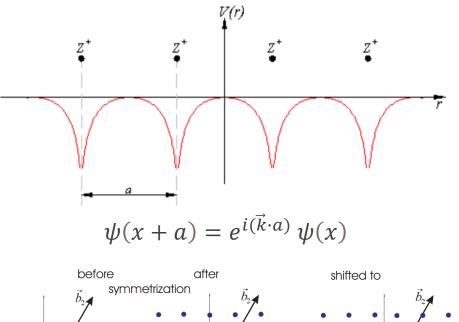
ACKNOWLEDGEMENTS

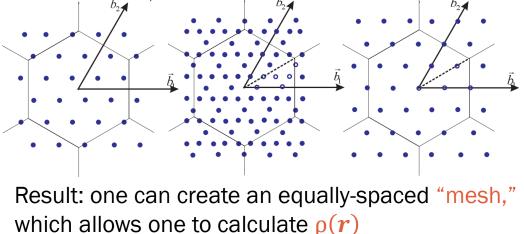
I want to thank the Portland State University REU on Applications of Microscopy and Microanalysis committee and the National Science Foundation Program (Award Number 1851851) for allowing me the opportunity to present and my faculty mentor, Yi Xia, for guiding me along the way!


DENSITY-FUNCTIONAL THEORY (HOHENBERG-KOHN)

Schrödinger equation:

$$\hat{H}\Psi\left(\vec{r}_1,\vec{r}_2,\ldots,\vec{r}_N,\vec{R}_1,\vec{R}_2,\ldots,\vec{R}_M\right) = E\Psi$$


DFT allows the ground-state energy E from the Schrödinger equation to be a functional of the electron density:


$$\rho(\boldsymbol{r}) = \sum_{i}^{N} |\psi_i(\boldsymbol{r})|^2 \to \boldsymbol{E} = \boldsymbol{E}[\rho(\boldsymbol{r})]$$

Wolverton, C., "MSE 458 Atomic-Scale Computational Materials Science." Northwestern University.

Bloch's Theorem in Solids (Periodic Cells):

