

The Environmental Hazard Assessment of Nanoscale Exfoliated **Graphene and Graphene Oxide: Impacts of Particle Preparation**

Hans Brown, OSU 2021 REU Symposium Principle Investigator: Dr. Jun Jiao, PSU Mentor: Dr. Stacey Harper, OSU

Overview:

1. Intro to nanotoxicology and graphene

- 2. Research question
- 3. Experimental methods
- 4. Results

5. Discussion

6. Recommendations for the future

Nanotoxicology

• Materials <100 nm

- High surface-area to volume ratio
- Unique physical and chemical properties
- Many are capable of entering cells and crossing the blood-brain barrier
- Growth in research and production of nanomaterials (NM) increases potential for humans and the environment to be exposed.

Jiao lab images of a film

Exfoliated Graphene (EG) and Graphene Oxide (GO)

Graphene Oxide

Forms a 2-3 nm monolayer
 (2D) film

Exfoliated Graphene

• Forms a 4-8 μm film

- Higher dispersibility
- Requires harsh reducing step during synthesis X

- Lower dispersibility X
- Does not require a reducing step

Applications

These carbon-based NM are resistant to ion exchange at the molecular and atomic level!

Solvents

N-methylpyrrolidinone (NMP)

Extends the duration of suspension and reduces agglomeration

~3 months

Ethanol

Less effective at extending suspension and reducing agglomeration

~1-2 weeks

DI-water

Causes rapid agglomeration and settling due to material hydrophobicity

<24 hours

What are the toxicological effects of nanoscale EG and GO prepared in different common solvents?

D. magna

EPA approved organism commonly used for freshwater ecotoxicity testing

All materials were dehydrated and rehydrated in DI-water before transfer to the Harper Laboratory.

Materials and Methods

Samples : 500 mg/L

- EG in NMP
- EG in NMP and Ethanol
- EG in Ethanol
- EG DI-water
- GO in Ethanol
- GO in DI-water

Range-Finding

- 0-75 mg/L
- Data used to inform concentration-response

This was a single blind study.

Developing a Concentration-Response

Daphnia in EG prepared in DI-water

Results

EG prepared in 1:1 NMP and EtOH

D. magna 48-hr Acute Toxicity: PSU Material #4

EG prepared in EtOH

EG prepared in DI-water

Discussion and Future Work

Producing nanomaterials that are **safer by design**!

Limitations

Mode of toxicity Chronic and sublethal effects Human effects

- Zebrafish Assay
- Replication
- Characterization

EG in NMP	EG in 1:1 NMP/ EtOH	EG in EtOH	GO in EtOH	EG in DI- water	GO in DI-water
Residual		Safest		Requires	
NMP is		alternative		more	
hazardous				tes	ting

Acknowledgements

I would like to thank:

Dr. Jiao, Dr. Sanchez, and Dr. Harper

Siri Vegulla

Kaleb Hood

Ben Hughes

Bryan Harper

Bibliography

 Kuhlbusch, T. A. J., Asbach, C., Fissan, H., Göhler, D., & Stintz, M. (2011). Nanoparticle exposure at nanotechnology workplaces: A review. *Particle and Fibre Toxicology*, 8(1), 22. <u>https://doi.org/10.1186/1743-8977-8-22</u>
 Seabra, A. B., Paula, A. J., de Lima, R., Alves, O. L., & Durán, N. (2014). Nanotoxicity of Graphene and Graphene Oxide. *Chemical Research in Toxicology*, 27(2), 159–168. <u>https://doi.org/10.1021/tx400385x</u>

3 Mazela, B., Batista, A., & Grześkowiak, W. (2020, July 13). *Expandable Graphite as a Fire Retardant for Cellulosic Materials-A Review*. MDPI. <u>https://www.mdpi.com/1999-</u> 4907/11/7/755/htm.

4 Pei, S., Zhao, J., Du, J., Ren, W., & Cheng, H.-M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. *Carbon*, 48(15), 4466–4474.

https://doi.org/10.1016/j.carbon.2010.08.006

5 Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A., & Zyryanov, G. V. (2020). An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. *Journal of Molecular Liquids*, 297, 111826. <u>https://doi.org/10.1016/j.molliq.2019.111826</u>

6 Skaltsas, T., Karousis, N., Yan, H.-J., Wang, C.-R., Pispas, S., & Tagmatarchis, N. (2012). Graphene exfoliation in organic solvents and switching solubility in aqueous media with the aid of amphiphilic block copolymers. *Journal of Materials Chemistry*, *22*(40), 21507. https://doi.org/10.1039/c2jm33245k

Zhao, Y., Brown, M. B., & Jones, S. A. (2010). The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams. *International Journal of Pharmaceutics*, 383(1-2), 277–284. <u>https://doi.org/10.1016/j.ijpharm.2009.09.029</u>
Orsini, L., Gilbert, D., Podicheti, R. *et al. Daphnia magna* transcriptome by RNA-Seq across 12 environmental stressors. *Sci Data* 3, 160030 (2016).

https://doi.org/10.1038/sdata.2016.30

9 Lan, C.-H., Peng, C.-Y., & Lin, T.-S. (2004). Acute Aquatic Toxicity of N-Methyl-2-Pyrrolidinone to Daphnia magna. *Bulletin of Environmental Contamination and Toxicology*, *73*(2). <u>https://doi.org/10.1007/s00128-004-0441-x</u>