Developing an Accessible, Low-Cost Air Cleaner for Safer Spaces During Wildfires

2021 REU Symposium Brett Stinson

Mentor: Dr. Elliott Gall

08/13/21

Introduction

- Exposure to wildfire smoke can cause detrimental health effects and increase overall mortality in humans¹
 - Fine particulate matter (PM_{2.5}) can penetrate lungs and cause respiratory issues
- Access to air cleaners may be limited during a wildfire event
 - DIY designs rely on high MERV-rated and HEPA filters, which will likely be in short supply
 - The Western U.S. wildfires of late Summer 2020 are an example of such a shortage
- We set out to develop a prototype air cleaner with such cost and resource restraints in mind
 - Box fans used to push large flowrates (>750 cfm) through filter
 - Common household fabrics deployed as particle filters, affixed to box fan—design is akin to a windsock

3

Rationale

- U.S. Environmental Protection Agency's (EPA) *Cleaner Indoor Air During Wildfires Challenge* criteria used as a benchmark for adequate air cleaning
- Air cleaner needed to achieve an 80% reduction of PM_{2.5} in 1 hour
 - 150 ft² room
 - 8 ft ceilings
- Assumptions:
 - Outdoor $PM_{2.5}$ concentration of 165 $\mu g/m^3$
 - Air exchange rate (λ) of 0.5 h⁻¹
 - Deposition loss rate (L_{dep}) of 0.4 h⁻¹
 - Penetration factor (P) of 0.7
- In theoretical room, $PM_{2.5}$ concentration stabilizes around 64 μ g/m³
- With 64 μ g/m³ inputted as an initial condition, a dynamic mass balance shows that a clean air delivery rate (CADR) of 75 cfm results in an 80% reduction of PM_{2.5} in 1 hour

Materials: Field Study

Material	Cost	
Box Fan	\$17	
Windsock Fabric	\$18- \$25	
Ratchet Strap	\$9	
Total:	\$44- \$51	

Т

- Air cleaner constructed from:
 - Holmes 21" x 21.1" x 4.4", three speed portable box fan
 - 52" long, 19" diameter cotton batting fabric
 - Ratchet strap

- CO₂ measured with Onset HOBO MX1102 battery-powered logger
- PM_{2.5} levels measured with Dylos DC1700 laser particle counter
- Mainichi-Koh sandalwood incense used to simulate wildfire PM_{2.5} concentrations

Experimental Design: Field Study

- Experiment carried out twice in two locations, both older homes in Oregon
- CO₂ elevated above 1000 ppm by excessively breathing and talking in the room.

Each trial consisted of 3 periods:

- Baseline measurements
 - Determined ambient PM_{2.5} concentrations needed for mass balance
 - Room flushed out until PM_{2.5} levels decreased substantially
 - Windows and doors were then closed, steady-state concentrations averaged over 15-30 minutes
- Background measurements
 - Mixing fan turned on, 3 sticks of incense lit simultaneously
 - Incense extinguished when particle count sufficiently high
 - Mixing fan turned off, researcher leaves room, concentrations allowed to decay for 45-60 minutes
- Air-cleaner test measurements
 - Same procedure as background measurements, except air cleaner was turned on before leaving room
 - Satisfactory decay period achieved in around 30 minutes

Materials: Laboratory Study

- Removal efficiency apparatus constructed from:
 - 12V pump

Healthy Buildings Research Lab

- 47 mm diameter filter holder
- Primary flow calibrator
- Rotameter
- TSI Optical Particle Sizer
- Flowrate measurement apparatus constructed from:
 - 24" x 24" x 10' steel ducting
 - 24" x 24" x 10' cardboard ducting
 - Ducting affixed with foil duct tape
 - Minneapolis Duct Blaster

Healthy Buildings Research Lab

Experimental Design: Laboratory Study

- Using the airflow measurement apparatus:
 - Have not completed this research yet

- Five fabrics were tested:
 - Cotton batting
 - Polyester
 - Flannel
 - Felt
 - Chiffon
- Using the removal efficiency apparatus:
 - Five air flowrate readings were averaged
 - Particle counts measured upstream: through the filter and system
 - Particle counts measured downstream: ambient laboratory conditions
- A pressure matching technique will be employed through the ducting, with a Minneapolis Duct Blaster
- Airflows will be recorded for each fabric at each fan setting
- Fabric surface area and airflow through the removal efficiency apparatus will be iterated upon to match the face velocity of the ducting system

Field Study Equations

$$-\ln \frac{C_{CO_2,t} - C_{CO_2,bg}}{C_{CO_2,t=0} - C_{CO_2,bg}} = \lambda t$$
 (Eq. 1)

 $C_{CO_2,t} = CO_2$ concentration at time *t* (ppm) $C_{CO_2,t=0} = CO_2$ concentration at time t=0 (ppm) $C_{CO_2,bg}$ = average background CO₂ concentration as measured during steady-state conditions (ppm) λ = air exchange rate of the room (h⁻¹).

$$-\ln \frac{C_{i,t} - C_{bg}}{C_{i,t=0} - C_{bg}} = (\lambda + \beta)t \qquad (Eq. 2)$$

 $C_{i,t} = PM_{2.5}$ particle concentration at time $t (\mu g/m^3)$ $C_{i,t=0} = PM_{2.5}$ particle concentration at time t=0 ($\mu g/m^3$) C_{bg} = average background PM_{2.5} particle concentration as measured during steady-state conditions ($\mu g/m^3$) ($\lambda + \beta$) = the total particle loss rate loss rate (h⁻¹).

Laboratory Study Equations

$$\eta = \frac{C_{upstream} - C_{downstream}}{C_{upstream}}$$
(Eq. 3)

 η = removal efficiency of the fabric $C_{upstream}$ = ambient particle concentration present in the laboratory (#/cm³)

 $C_{downstream}$ = particle concentration of air after having been pulled through the fabric and system (#/cm³).

$$V_{face} = \frac{Q}{A_{fab}}$$
(Eq. 4)

 V_{face} = face velocity of air moving across the filter (ft/min) Q = air flowrate (ft³/min) A_{fab} = surface area of the fabric, approximated as a circle for the removal efficiency apparatus and a cone for the ducting apparatus.

Results: Air Exchange Rates

- CO₂ concentrations deliberately elevated above 1000 ppm by way of human activity
- CO₂ allowed to decay over 100 minutes

Healthy Buildings Research Lab

• Linear regression performed to determine air exchange rates

Location 1: $\lambda = 0.77 \text{ h}^{-1}$ Location 2: $\lambda = 0.84 \text{ h}^{-1}$

Results: Loss Rates and CADRs

• Figure a)

Healthy Buildings Research Lab

- Sample plot of PM_{2.5} concentration vs. time for the air cleaner and background tests at location 1
- Figure b)
 - Linear regression for both tests and corresponding slopes (particle loss rate constants)
 - Resulting CADR calculation during the same experiment
- Across four trials, air cleaner yielded average CADR of 103 cfm, well above EPA challenge requirement
- Air cleaner yielded an average net $PM_{2.5}$ reduction of 83% after just 30 minutes of operation following peak concentrations

Results: Field Study Complete

	Location 1		Location 2		
	Trial 1	Trial 2	Trial 1	Trial 2	
Date	05/01/21	05/02/21	04/22/21— 04/23/21	04/23/21	
Time	14:20-18:36	11:02-14:35	21:29-0:37	8:58-11:07	
Room Volume (ft ³)	1200	1200	582.06	582.06	
Sound Level (dB)	45	45	59	59	
<i>Temperature</i> (°F)	67.04	68.38	64.87	56.25	
Relative Humidity (%)	51.28	48.35	42.44	47.98	
<i>Air Exchange Rate</i> (h ⁻¹)	0.77	0.77	0.84	0.84	
<i>PM2.5 Loss Rate (Background Test)</i> (h ⁻¹)	0.51	1.44	2.30	2.63	
<i>PM2.5 Loss Rate (Air Cleaner Test)</i> (h ⁻¹)	5.37	7.64	11.803	13.18	
CADR (cfm)	97.04	123.98	92.15	102.37	
Net PM _{2.5} Reduction After 30 Min. (%)	84.67	77.14	84.48	87.53	

Results: Removal Efficiencies

Material	Air Flowrate (L/min)	Average Concentration Upstream (#/cm³)	Average Concentration Downstream (#/cm ³)	Average Removal Efficiency (%)
Cotton	4.03	65.41	43.78	33.15
Polyester	4.14	93.73	65.82	29.68
Flannel	4.07	93.56	68.82	26.46
Felt	4.04	75.40	56.57	24.96
Chiffon	4.19	61.12	46.34	24.16

- Removal efficiencies relatively low in comparison to high-MERV rated and HEPA filters found in retail portable air cleaners
- Our prototype was designed to offset the low removal efficiency of the household fabric with large fabric surface areas and increased flowrates

Results: Air Flowrates and CADRs

Air Flowrate (cfm)

CADR (cfm)

Material	Low Speed	Medium Speed	High Speed	Material	Low Speed	Medium Speed	High Speed
Cotton				Cotton			
Polyester				Polyester			
Flannel				Flannel			
Felt				Felt			
Chiffon				Chiffon			

Conclusion

- The air cleaner prototype is constructed from low-cost materials, accessible to most in the event of a wildfire
- Field study:
 - An average CADR of 103 cfm was realized, well above the 75 cfm target required to meet the EPA challenge criteria
 - A net reduction of PM_{2.5} >80% in thirty minutes during injection and decay tests was realized
 - Laboratory study:
 - Five fabrics were tested, yielding removal efficiencies between 25 and 35%
 - More work to be done, but large surface areas combined with high fan flowrates should offset low removal efficiencies

Acknowledgements

REU SITE PROGRAM ON APPLICATIONS OF MICROSCOPY AND MICROANALYSIS

- Dr. Jun Jiao
- Dr. Erik Sanchez
- Siri Vegulla
- Dr. Elliott Gall
- Aurélie Laguerre

Developing an Accessible, Low-Cost Air Cleaner for Safer Spaces During Wildfires

Summer REU Symposium Brett Stinson

Mechanical Engineering Student

Maseeh College of Engineering and Computer Science

