EC3 and Embodied **Carbon Reduction**

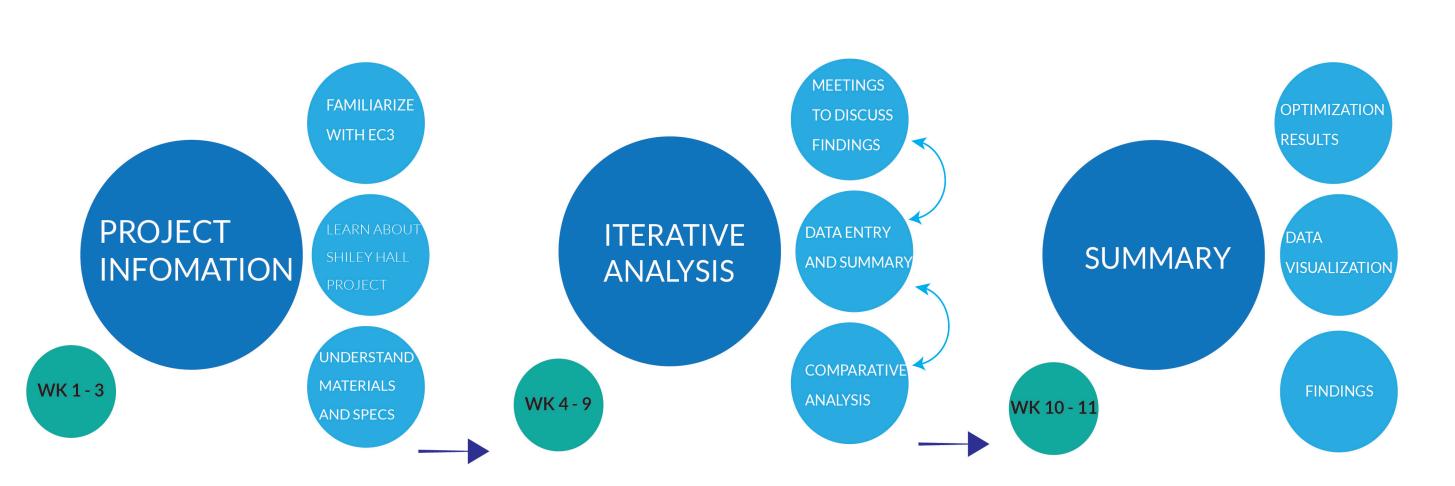
Karl Benjamin ARCH560 Fall 2020

Abstract and Project Information

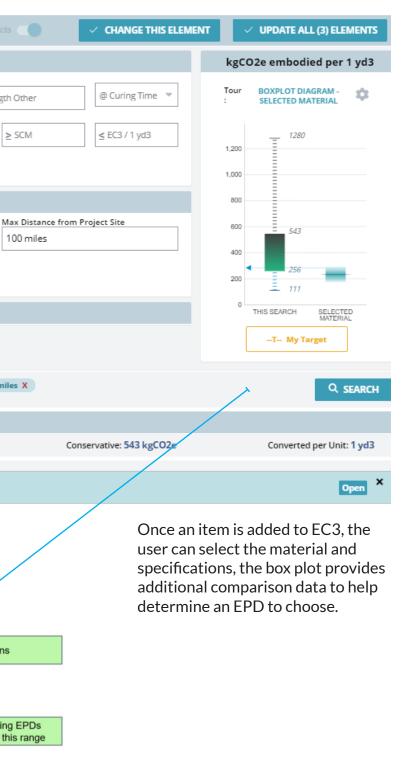
The objective of this research was to use the Embodied Carbon in Construction Calculator (EC3) tool to evaluate the embodied carbon emissions in several material categories, allowing for specification and procurement of low carbon options. The case study for this research is the Shiley-Marcos Center for Design & Innovation (University of Portland), an adaptive reuse project currently in the late design and procurement phase of the construction process. This research was intended to contribute to the research done during the design phases related to the Whole Building Life Cycle Analysis (WBLCA) using Tally. I worked primarily with Heather DeGrella and Kelli Kimura from Opsis, as well as Stacy Smedley from Skanska, who has extensively worked on developing EC3.

Throughout the research, I worked in two EC3 files related to the two primary aspects of this research:

- Establishing comparisons to baselines using the construction estimate to determine the possibility of carbon reductions for the Shiley-Marcos project
- Exploring EC3's optimization and compatibility with Tally


In the file related to the construction estimate, I took the material and quantity data, researched the proper specifications, and added them into EC3. I then selected an EPD for each material unit and used EC3 to create comparisons to baselines. From there we were able to see areas of improvement and various baselines for the specified materials. The second file we analyzed the differences between the embodied carbon amount that was reported directly out of Tally versus what EC3 calculated from the same materials and quantities.

User Interface


The user selects an EPD that fits the project needs and EC3 will use the data from this EPD to create summary data and comparisons. Certain specifications, such as concrete's curing time and percentage of SCM, are not required to be disclosed on EPDs. Therefore the list of possible vendors could be inflated. However, it provides a great starting point to select a manufacturer or to compare existing material procurement decisions with better options. There is also the option to select industry EPDs rather than specific products, giving a more conservative comparison.

SEARCH BY	PROPERTIES: 03 3	0 00 CAST-IN-PL/	ACE CONCRETE		icts
▼ PERF	ORMANCE SPECIFI	CATIONS			_
C	ompressive Strength	@	Curing Time		
~	4500 psi	2	28d 👻	≅ Compressive Stren	gth Other
Sh	ump (min) Op	tions	-	≤ W/C Ratio	≥ SCM
210			-	Stiretado	2 50101
0 9	Standardweight 🔘 Lig	ntweight			
▼ GEOG	GRAPHIC				
Filt	ter by Region	Ŧ	ilter by Country/State	/Province 🔻	Max Distance from Po 100 miles
GW	/P Transport Cost				
► ADVA	NCED				
PRODUCT		th @28d ≌ 4500 psi X			
Samples: 47	Act	nievable: 256 kgCO2	e Average: 40)9 kgCO2e ± 46.9%	Con
Selected	d material				
314565, Co	orvallis, RiverBend Mat	erials, 4500 psi, 283	kgCO2e, 79.4 miles		
		Measurem	ent Units		
	nest EC of any) found.	kgCO2e embo	died per 1 m3	Chart Optio	ns
		1,100	\$		
	of EPDs found e EC lower than	1,000			
this,	so it is a good	S00 Max Conservative	819 760	Most match	
CON	servative estimate	800	CLF Baseline	found fall in	this range
	of EPDs found	400 Achievable	410		
this,	so it should be	300 Min	296	CLF baselin	
ana	chievable target.	100		category (e.	g. for LEED)
	est EC of any				
cau	tion is advised as	-T-	- My Target		
	a or product may insuitable.				
		Control to	o set target		
				(Carbon Lea	adership Forum (CI
NDUSTRY E	PDS				
PRODUCT EF	PDS				
Samples: 72	Achie	vable: 266 kgCO2e	Average: 410	kgCO2e ± 45.2%	Conser
Selected r	naterial				
314565, Con	vallis, RiverBend Mater	ials, 4500 psi, 283 kg	CO2e, 79.4 miles		
	Manufacturer*	Plant or Plan			N Comment
ibcategory 🤝	Compare	Compare	✓ Product	↑↓ ✓ Description	1↓ Compressiv.
lyMix	CalPortland	Tumwater	63333	General purpose	
yMix	Cadman Inc	Foster Road	1308148	4500psiREG Ma	4500 psi 4500 psi
yMix	CalPortland	Woodland Ready		Products covered	-
yMix	Hooker Creek Co	Madras	Mix 35NF425		
1.000	HOOKER CIECK CO				
- IvMix	CalPortland	Tumwater	3434	General purpose	4500

An example of a list of concrete EPDs in EC3 populated with specifications such as strength and distance from site.

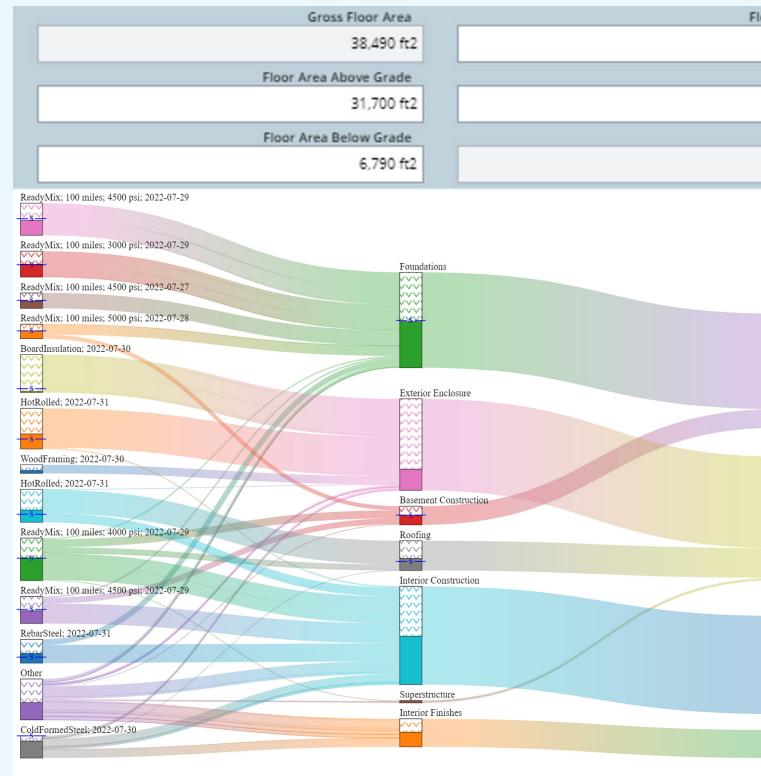
Project Timeline

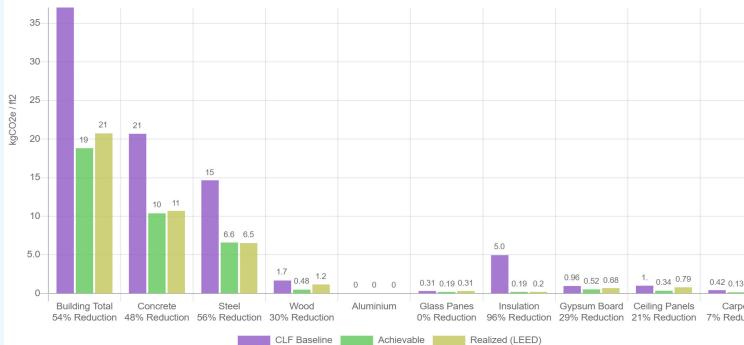
General purpose

Products covere

roducts covere

C	
Conservative: 538 kgCO2e	


]†↓	≅ Compressiv ↑↓	≤ EC3 / 1 yd3 ↓ ,	Straight-line D ↑↓	Details
÷	4500 psi	554 kgCO2e		Details View
	4500 psi	467 kgCO2e		Details View
d	4500 psi	467 kgCO2e		Details View
	4500 psi	464 kgCO2e		Details View
÷	4500 psi	463 kgCO2e		Details View
d	4500 psi	462 kgCO2e		Details View
d	4500 psi	459 kgCO2e		Details View


Converted per Unit: 1 yd3

Open X

Shiley Marcos Case Study

Optimization with Tally

Data from Tally		Data from EC3 (Tally export)	Differences	
Material	Embodied Carbon (kgCO2e)	Embodied Carbon (kgCO2e)	Differences	
03 - Concrete	308,405	423,481	(115,077	
04 - Masonry	38,833	-	38,833	
05 - Metals	89,255	166,034	(76,779	
06 - Wood/Plastics/Composites	-160,160	52,618	(212,777	
07 - Thermal and Moisture Protection	122,602	10,778	111,825	
08 - Openings and Glazing	65,002	130,561	(65,559	
09 - Finishes	29,732	41,192	(11,460	
Grand Total	493,669	824,664	(330,994	

Differences between Tally software and EC3 using the same materials and quantities as a comparison:

- Tally and EC3 calculate their baseline carbon amounts differently
- Existing concrete might have imported into EC3 and treated as new construction
- Tally considers wood products as a carbon sink whereas EC3 does not take this calculation into account
- Certain EPDs not yet available in EC3

Limitations

	<image/>	LANT	IN CENTER			77 Proposed Processes Processes Processes Processes Proposed Proposed Proposed Proposed Proposed Proposed Protocologies 37,650 sq. Proposed Proposed Proposed Protocologies 27,650 sq. Processes Protocologies 27,650 sq. Processes Protocologies 27,650 sq. Processes Protocologies 27,650 sq. Processes Protocologies 27,650 sq. Processes Protocologies 27,650 sq. Protocologies 27,650 sq	fin materials
Floors	ECTO	tal (Conservative)			EC Int	ensity (Conservati	
4 Stories		1.54M kgCO2e				40.1 kgCO2e	
Height 41 ft	EC	Total (Achievable) 724k kgCO2e			EC	Intensity (Achievat 18.8 kgCO2e)	
Weight		EC Total (Realized)	-		F	C Intensity (Realized	
7.60M lbs		804k kgC02e				20.9 kgC02e	
Substructure	shings	CLF Baseline 58% Achievable EC Target Net Zero Embodied Ca	1	the firm to move into Because to of an exis- is significa- construct carbon is compare to Recomme • The fin ~50%, which of Interfa • Wood of Stora E • Ensure procur	o make infor o procureme this building ting plant, the antly lower t ion project, much lower with other b endations: ishes section carpet is a m can be reduc ce Inc can be decre	n can be redu ajor driver o ed if purchas ased by proc ed material n EPD, certai	ns as they als. e reuse concrete r e embodie asy to iced by f this, sed from curing from
	03 - Concrete 05 - Metals 06 - Wood/Plastics/Composites 07 - Thermal and Moisture Protection 09 - Finishes	Baseline 908,000 452,263 64,221 190,561 91,367	Cons	oodied Carbon ervative Re 908,323 467,915 41,648 24,128 92,647		Achievable 444,965 208,169 18,630 7,308 38,157	
	08 - Openings and Glazing Grand Total	1,706,413	4	,534,661	778,392	717,230	
et uction	Granu Totai	1,700,413	1	,507,001	770,072	717,230	

Conclusions

- The usefulness of the direct connection to Tally is in question. If there are such large differences in the baseline numbers, does a direct link provide any benefit to to the decision making process?

- Adding material specifications can give a more accurate baseline number of embodied carbon, the downside to this however is if an EPD is not required to list the specification, then the list of possible suppliers becomes incorrectly limited. For example, while EC3 allows the user to enter tensile strength for steel, steel EPDs are not required to specify required to disclose this information. This provides a larger result set that will require additional research to find the best supplier.

Because EC3 looks at the materials at a supplier level, it is a tool best used once the majority of design decisions have been made. Opsis benefits from the fact that they included the desire to reduce carbon in their design decisions. This is important because it allowed them to have an implicit range of embodied carbon that was lower than if they had considered carbon at a later point.

The tool will become even more useful as more EPDs are added for more materials. It also puts pressure on manufacturers and suppliers to disclose more information about their products which will make this tool more accurate and inclusive.

While this research is only related to the embodied carbon, there are many factors and decisions that play to the greater issue of carbon. However, embodied carbon is a large category of emissions and it is one that the construction and design industries can control.