Memorandum of Understanding (MOU)

Between Office of Academic Affairs
And
Fariborz Maseeh Mathematics & Statistics, College of Liberal Arts & Sciences
Reference: Meeting (and Exceeding) Student Goals in Mathematics and Statistics

I. Purpose

This MOU outlines partnership roles and responsibilities for implementation of the Provost Challenge project: Meeting (and Exceeding) Student Goals in Mathematics and Statistics

II. Project Description and Key Project Outcomes

Overview:
With more than two-thirds of PSU students pursuing a B.S. degree, recent studies have shown that success in mathematics and statistics courses is linked to retention and degree completion. A significant and successful reframing of these courses will have a huge positive impact on these students. We propose a technology-supported redesign of the content and delivery architecture that will recognize prior knowledge and allow students to proceed more quickly and effectively through mathematics and statistics requirements. Our proposal includes cohort development, peer mentoring, student-centered curricula, technology-based guided learning, and community outreach. Our redesign will be driven by both assessment of student needs and assessment of student performance.

Key project outcomes (as agreed by Project Lead and Vice Provost):

1. Initiate redesign of 5 courses: online STAT 243, 244 (Introduction to Statistics), online MTH 251, flipped MTH 111, and emporium MTH 70.

2. Lead the design and implementation of an emporium style classroom space in Neuberger Hall 461 and 465 for delivery of redesigned courses.

III. Funding
The project team will be funded up to $250,000 to achieve the outcomes established for this project. Vice Provost for Academic Innovation in consultation with Provost and the appropriate dean may increase, reduce or terminate funding for this project.

IV. Project Coordination
The College of Liberal Arts & Sciences agrees to assign a program liaison who will serve as the main point of contact between OAA and the College of Liberal Arts & Sciences, to coordinate the implementation of this proposal and to assist with any issues that might arise.

Coordination will include:
• Coordination and communications between the project team, departments, and the College of Liberal Arts and Sciences (hereafter referred to as “the College”) and other administrative units to ensure policy and procedures are in place to facilitate the offering of this program to distance students.

• Development and implementation of Service Level Plan with OAI in close collaboration with project leadership team.

• Collaborate with focus area leads to improve collaboration among reTHINK PSU: Provost Challenge projects.

Department Program Liaison: Rachel Webb, webbr@pdx.edu, 503-725-3642
Focus area leads: Gwen Shusterman, Associate Professor, Chemistry
Office of Academic Innovation Point of Contact: Johannes De Gruyter, Interim Director, Platform & Pedagogy

V. Course Development and Collaboration
The Course Developers/Instructors will engage in continued collaboration with OAI from project inception and will ensure course completion and approval of the course at least 4 weeks prior to the initial term start. The project coordinator and OAI will determine the appropriate course development process for this project. The project coordinator will consult with the project leadership team for input on the appropriate process. Completion status of the course is determined by the Director of Pedagogy & Platform in consultation with the College designee. Courses will be reviewed for quality assurance by designee(s) from the College/Department and Office of Academic Innovation upon completion and approval prior to initial course offering.

If the course is not complete in D2L and ready to be taught at least 4 weeks prior to the start of initial term, the OAI Director of Pedagogy & Platform will consult with the Department Chair concerning advisability of course cancellation.

As delineated in the existing MOU with the College, Office of Academic Innovation will provide basic course development and production including: instructional design with best practices covering accessibility and copyright, project management, media development, D2L course development, training, and on-going student (OIT) and instructor support. In addition, for this project, OAI will support the development of course elements and templates for use across Mathematics and Statistics online courses and the production of training materials to support the future development of Mathematics and Statistics online courses and the use of the course elements and templates. This work will proceed as collaboration between OAI and the project leadership team. Budget permitting, OAI will also provide support to faculty in subsequent years to assure courses reflect current best practices and up to date course content.

VI. Use of Course and Materials
Course Developer(s) will be the named author or a principal developer of the course materials. The Course Developer has the right to remove his or her name from the course at any time, in coordination with the academic Department and Office of Academic Innovation. The Department can appoint others to teach this course.

Consistent with the rules encompassed in Oregon Administrative Rule 580-43 and Internal Management Directive 6.2, and by PSU’s guidelines found at http://www.pdx.edu/research/ip-policies-copyright, PSU owns the course and materials. Full and specific course materials guidelines can be found at http://www.pdx.edu/research/ip-policies-coursematerial. Even if, by policy, the copyright to course materials must be assigned to PSU, the creator of those course materials still retains some control over them. If the PSU owned work will not be given away or exchanged for monetary compensation, PSU gives the author free permission to copy, distribute, make derivatives, perform, or display the work as long as they are appropriately marked © Portland State University. PSU, however, also reserves the right to use the work in any way it wishes.

VII. Dissemination
Mathematics and Statistics department is responsible for updating the University community about the status of the project. This includes maintaining their reTHINK PSU: Provost Challenge website web presence, participating in public presentations, and participation in an ongoing community of practice. Specific opportunities for participation in public events will be presented to Mathematics and Statistics department by the Office of Academic Innovation.
VIII. Evaluation & Project Improvement
Mathematics and Statistics department agrees to work with OAI and their development services partner (this may include: external vendor for course development, video production, etc.) to implement a plan for putting formative and summative feedback mechanisms in place to measure project success, including basic student success metrics.

End-of-Project Report:
Please submit a final report after completion of the project to include:

- Description of the development process
- Two-year schedule for continued course and program delivery
- Survey of student feedback on the experience taking the courses (where available)
- Course evaluation instruments
- Faculty evaluation of the program/project development activity supported by OIA
- Final expense report
- Plans for program sustainability

After submission and acceptance of the final report, the Office of Academic Innovation review team will verify that all program components are in place.

IX. Funding Agreement Terms
The funding agreements in this document are contingent upon completion of course development and offering as describe above, and summarized in the Course Development Plan. Changes to the agreements, timetables or funding will be based on written agreement between the College and Office of Academic Innovation designees. OAI will provide an index code that will be used for funding of this project. There will be no transfer of funds.

X. Resolution of Disagreements
In the event of a disagreement that cannot be resolved by the parties, resolution will be through agreement of Vice Provost for Academic Innovation and the Dean of the Department’s College.

WITNESS WHEREOF, the representatives have signed this Memorandum of Understanding on the

19 day of September, 2013.

Joyce O'Halloran, Project Lead, Professor, Mathematics and Statistics

Steven Bleiler, Department Chair, Mathematics and Statistics

Sukhwant Jhaj
Vice Provost for Academic Innovation and Student Success

Sue Beatty, Dean, CLAS

Enclosures:
- Copy of reThink PSU: Provost Challenge project proposal
- Approved budget
- Project team and contact information
#47 Meeting (and exceeding) student goals in mathematics and statistics

Last modified: February 20, 2013 - 10:52am

Project Lead
Joyce O'Halloran
Professor
FARIBORZ MASEEH MATHEMATICS & STATISTICS – LIBERAL ARTS & SCIENCES

Primary Collaborators
Rachel Webb
Senior Instructor
FARIBORZ MASEEH MATHEMATICS & STATISTICS – LIBERAL ARTS & SCIENCES
Joseph Ediger
Senior Instructor
Fariborz Maseeh Mathematics and Statistics – Liberal Arts & Sciences
Austina Fong
Instructor and Placement Coordinator
Fariborz Maseeh Mathematics and Statistics – Liberal Arts & Sciences
Milan Sherman
Assistant Professor
Fariborz Maseeh Mathematics and Statistics – Liberal Arts & Sciences
Andrew Flight
Instructor
FARIBORZ MASEEH MATHEMATICS & STATISTICS – LIBERAL ARTS & SCIENCES
Paul Latiolais
Professor
FARIBORZ MASEEH MATHEMATICS & STATISTICS – LIBERAL ARTS & SCIENCES
Michael Chamberlain
Instructional Designer
Center for Online Learning
Marie Lewandowski
Sr. Instructional Designer
Disability Resource Center–Student Affairs
Sylvia Giroux
Senior Instructor
FARIBORZ MASEEH MATHEMATICS & STATISTICS – LIBERAL ARTS & SCIENCES

Additional Collaborators
Dept. of Chemistry, Dept. of Psychology, Dept. of Sociology We’ve been communicating with other departments also.

Challenge
Reframing Challenge

Abstract/Summary
With more than two-thirds of PSU students pursuing a B.S. degree, recent studies have shown that success in mathematics and statistics courses is linked to retention and degree completion. A significant and successful reframing of these courses will have a huge positive impact on these students. We propose a technology–supported redesign of the content and delivery architecture that will recognize prior knowledge and allow students to proceed more quickly and effectively through mathematics and statistics requirements. Our proposal includes cohort development, peer mentoring, student–centered curricula, technology–based guided learning, and community outreach. Our redesign will be driven by both assessment of student needs and assessment of student performance.

Introduction
An innovative mathematics and statistics program supporting student success is essential to building capacity to support academic excellence for all students, particularly the success of students traditionally underrepresented in higher education. More than 80% of PSU’s graduates enroll in mathematics and statistics courses during their PSU experience. The students in mathematics and statistics “service courses” often struggle, impacting retention and time to degree completion. The DFW rates (students who receive a grade of D, F, or Withdraw) are high in these courses; for example, 38% of students received a D, F, or W in a fall term large-lecture STAT 243 class in 2012. We also find that many of the students who pass these courses are still not adequately prepared for downstream courses (in mathematics and in other disciplines).

We propose a redesign of our service courses in the mathematics and statistics program that:

- is supported by research on the effective use of technology and human resources to improve student learning, is informed by assessment of student needs,
- is informed by assessment of student performance,
- advances mathematics and statistics knowledge required for degrees in a variety of majors,
- expands our community outreach,
- includes cohort development, peer mentoring, student-centered curricula, and technology-based guided learning.

Recent redesign efforts
The Fariborz Maseeh Department of Mathematics and Statistics has already made big steps forward in improving student learning in lower division courses:

- Performance-based online placement into lower division courses has been mandatory since Winter quarter of 2012, using ALEKS (Assessment and Learning in Knowledge Spaces).
- Students have been using the learning component of ALEKS to place into higher math classes and thereby satisfy mathematics requirements more quickly.
- Precalculus, calculus, and statistics courses in the flipped format (see below) and eTutoring from the Learning Center were piloted this quarter with great success.

With support from the Center for Online Learning, a group of faculty and instructors (listed above) in the Fariborz Maseeh Department of Mathematics and Statistics have been developing and piloting “flipped” courses in precalculus, calculus, and statistics, as well as online courses in calculus and statistics. “Flipped” refers to the strategy of providing online lectures and online homework systems, allowing face-to-face time to be used for developing deeper understanding in an in-class and/or computer-assisted cooperative learning format. The sections of flipped courses piloted Summer 2012 and Fall 2012 resulted in significantly more student success than traditional sections. Based on studies of student success in mathematics and statistics here at PSU and at other institutions of higher education, we propose to expand these redesign efforts: pilot, assess, make improvements based on assessment, and expand implementation of multiple learning strategies in mathematics and statistics. We plan to work in collaboration with departments whose majors depend on these courses, adjusting our program to meet their needs.

One of our goals is to reframe service course offerings in a way that recognizes prior knowledge and allows students to proceed more quickly through mathematics and statistics requirements. Our reframing plan will be designed to be more attractive to students who have been avoiding taking mathematics and statistics courses, and we plan to use technology to more effectively use the limited human resources available.

Impact/Significance
We propose to expand the redesign that we recently initiated. In particular, we plan to address student needs in pre-college math and in quantitative literacy, as well as student needs within degree programs. Our underlying principle is: Students learn math by doing math, not by listening to someone talk about doing math.

More than 80% of PSU’s graduates enroll in mathematics and statistics courses during their PSU experience. The service courses in mathematics and statistics are required courses in many majors; consequently, time to degree completion is often dependent on completion of one or more of these courses as early as possible in a student’s university experience. Unfortunately, many of our students have gaps in their math knowledge and delay taking the math courses required for their degree. Sometimes this results in failure to graduate and sometimes students finish with an interdisciplinary degree instead of a degree in their chosen major. Even when students pass these courses, some are still not adequately prepared for downstream courses.

Prerequisite and placement enforcement has already improved DFW rates (see chart above). The learning component of ALEKS can be even better utilized to further reap the student benefits seen thus far.

In our recent pilot of flipped courses, we have already experienced success: the DFW rate for the flipped STAT 243 course was only 13% with an average grade of 80%, as opposed to 38% with an average grade of 74% in a regular large section taught by the same instructor.

Looking nationwide at redesign efforts in mathematics at NCAT (National Center for Academic Transformation) partner institutions, we see:

- Students successfully completing a developmentaali math course increased by 51% on average (ranging from 10–135%) while reducing the cost of instruction by 30% on average (ranging from 12–52%).
- Students successfully completing a college-level math course increased by 25% on average (ranging from 7–63%) while
reducing the cost of instruction by 37% on average (ranging from 15–77%).

At PSU, almost 50% of students who take the ALEKS placement test initially place into remedial mathematics (MTH 70, 95, or lower). Students who choose to use the learning module in ALEKS to refresh on these topics tend to increase their score by 15% (an entire course) on their reassessment. This allows us to retain these students without sending them away to a community college to complete coursework that is likely previously-learned. Although this resource is available to all PSU students, many have difficulty finding the time to use it alongside their other full-time obligations. If we can incorporate this powerful technology into a course that can contribute to a student’s full-time status, we can better assist these students to move into college level courses more quickly and effectively.

A redesign of our service courses in mathematics and statistics will also boost ongoing community outreach programs (Challenge and LINk and classes at correctional facilities) which are helping students get an early start as well as recruiting students to PSU.

Many of these courses are currently taught by graduate students and adjuncts, most of whom are dedicated but inexperienced. Providing more structure and direction for these instructors will be an essential component of our redesign, creating more consistency among these courses and our students’ continuing knowledge.

We expect implementation of our proposal to result in significant improvements in:

- Success rates
- Retention
- Graduation rates
- Time to degree completion
- Completion of chosen degree
- Course content that better serves student needs (particularly quantitative literacy for non-STEM students)
- Education for our graduate students in best practices and alternative models of pedagogy
- Early learning and recruitment via community outreach

Approach and Strategy

Recognizing that student interaction is essential to student success, we plan to develop cohorts and to make use of other strategies that bring students together (e.g. Brian Forrester’s BuddyUp proposal). A foundational component of our proposal is assessment of student needs and assessment of student performance.

Our approach includes:

- Student-centered curricula:
 - Identifying student needs in mathematics and statistics:
 - The mathematics and statistics content supporting their majors
 - Mathematics and statistics content supporting responsible citizenship
 - Support needs: cohort development, peer mentoring, eTutoring, etc.
 - Assessment of student performance
 - Developing and implementing curricula that meet student needs
 - Developing and implementing architecture of delivery of curricula that promotes student success and uses human resources efficiently
 - Addressing math anxiety

- Expanding the feedback loop so that assessment drives subsequent re-redesign
- Using research on the effective use of technology and human resources to improve student learning, particularly technology-based guided learning
- Expanding our community outreach

We will continue to integrate open source resources (e.g. Kahn Academy) into our courses. If any existing MOOCs (Massive Open Online Courses) are compatible with our course goals, we could integrate them into our program where appropriate. Similarly, course exchange programs could be integrated into our program.

The current course offerings we propose to reframe are those with high student enrollments:

- MTH 70, 95 (pre-college)
- MTH 105 (quantitative literacy)
- MTH 111, 112 (pre-calculus)
- MTH 251, 252 (differential and integral calculus)
- STAT 243, 244 (introduction to statistics).

The specific delivery formats that we propose to utilize are:
• eTutoring: Online tutoring is in the pilot stage at PSU now, with a plan to offer it to all students starting Fall of 2013.
• Emporium format: In a large room filled with computers and roving instructors, students use interactive software to learn math skills. See http://www.kent.edu/mathemporium/index.cfm for information on the emporium format successfully implemented at Kent State University.
• Modules: We plan to offer quantitative literacy courses in technology-supported self-paced 1-credit modules.
• Flipped class formats: In our pilot "flipped courses," students watch videos instead of face-to-face lecture and use interactive software to learn math skills. Class time is reserved for cooperative learning activities, often using math learning software in a computer lab, thereby increasing understanding and addressing misconceptions early on. The flipped model transforms classrooms from a focus on the delivery of information to interaction and comprehension of that information.

For a “big-picture” viewpoint of changes in higher education, including descriptions of emporium and flipped models, see: http://www.educause.edu/ero/article/challenge-and-change

Our proposal targets the three student needs:
• Preparation for college-level mathematics and statistics courses
• Quantitative literacy
• Proficiency in mathematics and statistics required for majors in other departments

In all cases, students in these learning paths will be supported by forming cohorts, peer mentoring, and eTutoring. At all levels, the ALEKS learning system will be available to identify knowledge gaps, to support students in filling in those gaps, and to facilitate students to move more quickly through mathematics and statistics requirements.

Our team is looking forward to expanding our current efforts to improve student success in mathematics and statistics, thereby improving retention and time to degree completion.

Milestones

<table>
<thead>
<tr>
<th>Goal</th>
<th>Prior to Fall 2013: collecting information + course design</th>
<th>2013–2014 Academic year: implementation + assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep for Univ-level math</td>
<td>---design: emporium-style courses assessments of student proficiencies</td>
<td>---implement courses, supported by the ALEKS online learning system ---assess proficiency and attitudes of these students</td>
</tr>
<tr>
<td>Quant. Lit. Non-STEM majors</td>
<td>---student focus groups to identify factors motivating non-STEM students to enroll in mathematics classes earlier in their university experience and implement a strategy to attract these students ---design: courses emphasizing quantitative literacy assessments of student proficiencies</td>
<td>---pilot these course(s) ---analyze enrollment demographics ---assess proficiency and attitudes of these students</td>
</tr>
<tr>
<td>Prep for STEM majors</td>
<td>---review assessments of online and flipped courses that were piloted during the 2012–2013 academic year: online: statistics (STAT 243, 244), calculus (MTH 251, 252) statistics (STAT 243, 244), precalculus (MTH 111, 112), calculus (MTH 251, 252) ---continue our conversations with other departments to identify needs of their</td>
<td>---implement the modified courses ---assess student proficiency ---modify courses as indicated ---conduct workshops to inform faculty and GTA’s of the course designs</td>
</tr>
</tbody>
</table>
Summer 2014:

--analyze data about student proficiency and student attitudes and modify course designs based on that analysis
-- based on data collected, modify our strategy to encourage non-STEM students to enroll in mathematics courses early in their university experience

Benefits

Our short-term benefits are:

1. To improve student success in mathematics and statistics via technology-supported learning and efficient use of human resources
2. Course content that better serves student needs
3. Teaching experience for our graduate students in alternative models of pedagogy
4. Teaching assistant opportunities for STEM students (see below)

Our long-term benefits are:

1. Continuation of the above benefits
2. Improvement of retention, graduation rates, time to degree completion, and completion of chosen degree via success in mathematics and statistics early in students’ university experience
3. Technology-based teaching strategies for faculty and GTA’s so that we can use human resources more efficiently

The courses we propose to create and/or redesign had a total enrollment of over 30,000 student credit hours during the 2012 calendar year. Based on historical trends, these enrollments will grow with growth in the student population at PSU.

We propose to hire 2–3 undergraduate teaching assistants and 1–2 GTA’s to assist with our emporium-style classes. This shifts funds previously allocated to adjuncts to financial support for students, as well as providing those students with valuable teaching experience.

By using prepared and vetted course strategies and materials, as well as online homework systems, our 31 GTA’s and the 14 faculty who teach these courses will cut class preparation time significantly, allowing more time for their studies.

Consequences

1. Continuing DPW rates of 13% to 36% in the courses we propose to redesign.
2. Continuation of poor retention, graduation rates, time to degree completion, and completion of chosen degree because of:
 --inefficient use of student study time in developing proficiencies in mathematics and statistics that allow them to enroll in college-level courses
 --non-STEM students delaying their enrollment in mathematics courses
 --inadequate proficiency in the mathematics and statistics required for success in their majors
3. Inefficient use of financial and human resources

Needs Assessment
Meeting and Exceeding Student Goals

Mathematics and Statistics

Course design group in the Fall

Department of Mathematics and Statistics

Rethink presentation http://www.slideshare.net/joycehalloran/rethink-presentation from joycehalloran http://www.slideshare.net/joycehalloran

Tags
21st Century Student, Accelerated College Program, Assessment/ePortfolio, College Access, Cost of Degree, Degree Completion, Developmental Ed, Financial Literacy, High-Quality Learning, MOOCs/Open Access, New Models, Online Education, Process Change, Proficiency Based Curriculum, Student Success, Undergraduate, Underrepresented Students, Workforce Development,

Comments

Robert Mercer — January 3, 2013 – 1:12pm

the Department of Mathematics has done so much in recent years—reviewing curriculum, mandatory online placement, etc.---that is already showing positive results for students. I think this proposal would be another big positive step in improving student success in math courses and in courses across the University that build on strong math skills.
ReThink PSU Budget Template

<table>
<thead>
<tr>
<th>Category</th>
<th>Two Year Costs</th>
<th></th>
<th>FINAL BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Budget Team Estimate</td>
<td>Original Request</td>
<td></td>
</tr>
<tr>
<td>Personnel (Including OPE)</td>
<td>$150,588</td>
<td>$284,562</td>
<td>$27,647</td>
</tr>
<tr>
<td>Training and Faculty Development</td>
<td>$66,194</td>
<td>$30,000</td>
<td>$15,714</td>
</tr>
<tr>
<td>Materials and Supplies</td>
<td>$600</td>
<td>$300</td>
<td></td>
</tr>
<tr>
<td>Consultants/Contractors</td>
<td>$-</td>
<td>$-</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>$-</td>
<td>$-</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>$21,280</td>
<td>$43,646</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>$21,000</td>
<td>Unspecified Amount</td>
<td>$10,639</td>
</tr>
<tr>
<td>Library</td>
<td>$-</td>
<td>$-</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>$-</td>
<td>$196,000</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>$259,662</td>
<td>$358,508</td>
<td>$250,000</td>
</tr>
</tbody>
</table>

Instructions: Please fill in your requested budget amount for each category in the highlighted column. See the related tabs for information pulled from your budget with modifications made by the budget team, plus amounts estimated by the Library and OIT.

NOTE: TRAINING AND FACULTY DEVELOPMENT COSTS CANNOT BE CHANGED.
Funding will be apportioned as follows:

1. Up to $196,000 to remodel NH 461 & 465 per the quote from Francis McBride $3,000 (+OPE) for each course to the developer; $6000 to Rachel Webb for STAT 243 & 244, $3000 to Austina Fong for MTH 251, $3000 to Joe Ediger for MTH 111, $3000 to Sylvia Giroux for MTH 70
2. Administrative stipends of $2000 each to Rachel Webb and Joyce O'Halloran
3. Stipends for assessment of $1000 each to Austina Fong and Paul Latiolas
4. Payment to OAI for training and faculty of $15,714
5. New purchases of required technology of $10,639
Project #47 Team Information

Project Lead:
Joyce O'Halloran, joyce@pdx.edu, 5-3652

Primary Collaborators:
Rachel Webb, webbr@pdx.edu, 5-3642
Paul Latiolais, hmpl@pdx.edu, 5-3632
Joseph Ediger, ediger@pdx.edu, 5-3651
Austina Fong, austinaf@pdx.edu, 5-3613
Milan Sherman, milan.sherman@pdx.edu, 5-4833
Andrew Flight, flight@pdx.edu, 5-3629
Michael Chamberlain, mrchambe@pdx.edu, 5-9118
Marie Lewandowski, mslewand@pdx.edu, 5-4863
Sylvia Giroux, sylviag@pdx.edu, 5-4564