Common Symbols

n = Sample Size

 $\bar{x} = \text{Sample Mean}$

s = Sample Standard Deviation

 s^2 = Sample Variance

 $\hat{p} = Sample Proportion$

r = Sample Correlation Coefficient

N = Population Size

μ = Population Mean

 σ = Population Standard Deviation

 σ^2 = Population Variance

p = Population Proportion

 ρ = Population Correlation Coefficient

Descriptive Statistics

In Excel use Data > Data Analysis > Descriptive Statistics

$$\bar{x} = \frac{\sum x}{n}$$

$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

$$\overline{x} = \frac{\Sigma x}{n}$$
 $s^2 = \frac{\Sigma (x - \overline{x})^2}{n - 1}$ $s = \sqrt{\frac{\Sigma (x - \overline{x})^2}{n - 1}}$ $z = \frac{x - \overline{x}}{s}$ Range = Max – Min

$$z = \frac{x - \overline{x}}{s}$$

$$Range = Max - Min$$

IQR=interquartile range = $Q_3 - Q_1$

Coefficient of Variation = $\frac{s}{r}(100\%)$

Finding Outlier Limits: Lower = $Q_1 - (1.5*IQR)$ Upper = $Q_3 + (1.5*IQR)$

Probability

Union Rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

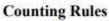
Complement Rule: $P(A^C) = 1 - P(A)$

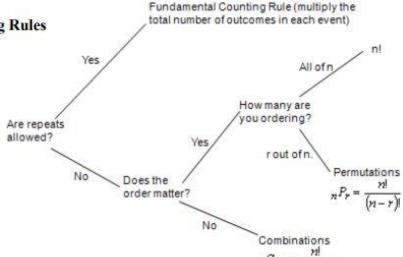
Conditional Probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Mutually Exclusive Events: $P(A \cap B) = 0$

Dependent Events: $P(A \cap B) = P(B) \cdot P(A \mid B)$

Independent Events: $P(A \cap B) = P(B) \cdot P(A)$

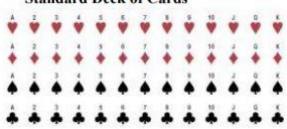




Sum of Two Dice

		Second Die					
15	+	1	2	3	4	5	6
e	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
ā	3	4	5	6	7	8	9
rst	4	5	6	7	8	9	10
IT.	5	6	7	8	9	10	11
3	6	7	8	9	10	11	12

Standard Deck of Cards



Face Cards are Jack (J), Queen (Q) and King (K)

Discrete Probability Distributions

$$\mathrm{E}(x) = \mu = \Sigma x \cdot P(x) \qquad \sigma^2 = \left(\Sigma x^2 \cdot P(x)\right) - \mu^2 \qquad \sigma = \sqrt{\left(\Sigma x^2 \cdot P(x)\right) - \mu^2}$$

Binomial Distribution: $P(x) = {}_{n}C_{x} \cdot p^{x} \cdot q^{(n-x)}$ $\mu = n \cdot p$ $\sigma^{2} = n \cdot p \cdot q$ $\sigma = \sqrt{n \cdot p \cdot q}$

Signs A	re Important For Discrete Dist	ributions!	
P(X=x)	P(X≤x)	P(X≥x)	
Is	Is less than or equal to	Is greater than or equal to	
Is equal to	Is at most	Is at least	
Is exactly the same as	Is not greater than	Is not less than	
Has not changed from	Within		
Is the same as	33333333		
=BINOM.DIST(x,n,p,false)	=BINOM.DIST(x,n,p,true)	=1-BINOM.DIST(x-1,n,p,true	
TI: binompdf(n,p,x)	TI: binomedf(n,p,x)	TI: 1-binomedf(n,p,x-1)	
Where:	P(X>x)	P(X <x)< td=""></x)<>	
x is the value in the	More than	Less than	
question that you are	Greater than	Below	
finding the probability for.	Above	Lower than	
p is the proportion of a	Higher than	Shorter than	
success expressed as a	Longer than	Smaller than	
decimal between 0 and 1	Bigger than	Decreased	
n is the sample size	Increased	Reduced	
	Smaller	Larger	
Excel:	=1-BINOM.DIST(x,n,p,true)	=BINOM.DIST(x-l,n,p,true)	
TI-Calculator:	1-binomcdf(n,p,x)	binomcdf(n,p,x-1)	

Poisson Distribution: $P(x) = \frac{e^{-\mu}\mu^x}{x!}$ Change mean to fit the units in the question: $P(x) = \frac{e^{-\mu}\mu^x}{x!}$ Change mean to fit the units in the question: $P(x) = \frac{e^{-\mu}\mu^x}{x!}$

P(X=x)	P(X≤x)	P(X≥x)		
Is	Is less than or equal to	Is greater than or equal to		
Is equal to	Is at most	Is at least		
Is exactly the same as	Is not greater than	Is not less than		
Has not changed from	Within			
Is the same as				
=POISSON.DIST(x,mean,false)	=POISSON.DIST(x,mean,true)	=1-POISSON.DIST(x-1,mean,true)		
TI: poissonpdf(mean,x)	TI: poissoncdf(mean,x)	TI: 1-poissoncdf(mean,x-1)		
Where:	P(X>x)	P(X <x)< td=""></x)<>		
x is the value in the	More than	Less than		
question that you are	Greater than	Below		
finding the probability for.	Above	Lower than		
	Higher than	Shorter than		
The mean has been rescaled to	Longer than	Smaller than		
the units of the question.	Bigger than	Decreased		
•	Increased	Reduced		
	Smaller	Larger		
Excel:	=1-POISSON.DIST(x,mean,true)	=POISSON.DIST(x=1,mean,true)		
TI-Calculator:	1-poissoncdf(mean,x)	poissoncdf(mean,x-1)		

Continuous Distributions

Continuous Distributions
$$z = \frac{x - \mu}{\sigma} \qquad x = z \cdot \sigma + \mu \qquad \text{Central Limit Theorem:} \qquad z = \frac{\overline{x} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)}$$

Note that for a continuous distribution there is no area at a line under the curve, so ≥ and > will have the same probability and use the same Excel commands.

Normal Distribution

Normal Distribution Finding a Probability			
$P(X \le x)$ or $P(X \le x)$	$P(x_1 \le X \le x_2)$ or $P(x_1 \le X \le x_2)$	$P(X \ge x)$ or $P(X \ge x)$	
Is less than or equal to	Between	Is greater than or equal to	
Is at most	· · · · · · · · · · · · · · · · · · ·	Is at least	
Is not greater than		Is not less than	
Within	· · · · · · · · · · · · · · · · · · ·	More than	
Less than	·	Greater than	
Below		Above	
Lower than	*	Higher than	
Shorter than		Longer than	
Smaller than		Bigger than	
Decreased	*	Increased	
Reduced		Larger	
NORM.DIST (x,μ ,σ,true)	=NORM.DIST (x_2,μ , σ ,true)- NORM.DIST (x_1,μ , σ ,true)	=1- NORM.DIST (x,μ ,σ,true)	

Note that the NORM.S.DIST function is for a standard normal when μ =0 and σ =1.

Inverse Normal Distribution

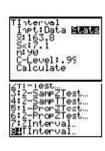
Normal Distrib	ution Finding an X-value Given an A	Area or Probability	
$P(X \le x)$ or $P(X \le x)$	$P(x_1 \le X \le x_2)$ or $P(x_1 \le X \le x_2)$	$P(X \ge x)$ or $P(X \ge x)$	
Lower	Between	Upper	
Bottom		Тор	
Below		Above	
Reduced		More than	
Less than		Greater than	
Lower than		Larger	
Shorter than		Higher than	
Smaller than		Longer than	
Decreased		Bigger than	
		Increased	
-NORM.INV(area,μ,σ)	$x_1 = NORM.INV(1-area/2, \mu, \sigma)$ $x_2 = x_1 $	=NORM.INV(1-area, μ,σ	

Confidence Intervals

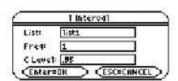
When n < 30 the variable must be approximately normally distributed.

The 100(1 - α)% confidence interval for μ , σ is unknown, is $\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$. t-Interval

 On the TI-83 you can find a confidence interval using the statistics menu. Press the [STAT] key, arrow over to the [TESTS] menu, arrow down to the [8:TInterval] option and press the [ENTER] key. Arrow over to the [Stats] menu and press the [ENTER] key. Then type in the mean, sample standard deviation, sample size and confidence level, arrow down to [Calculate] and press the [ENTER] key. The calculator returns the answer in interval notation. Be careful, if you accidentally use the [7:ZInterval] option you would get the wrong answer.



- Or (If you have raw data in list one) Arrow over to the [Data] menu and press the [ENTER] key. Then type in the list name, L, leave Freq: 1 alone, enter the confidence level, arrow down to [Calculate] and press the [ENTER] key.
- On the TI-89 go to the [Apps] Stat/List Editor, then select 2nd then F7 [Ints], then select 1:TInterval. Choose the input method, data is when you have entered data into a list previously or stats when you are given the mean and standard deviation already. Type in the mean, standard deviation, sample size (or list name (list1), and Freq: 1) and confidence level, and press the [ENTER] key. The calculator returns the answer in interval notation. Be careful, if you accidentally use the [1:ZInterval] option you would get the wrong answer.



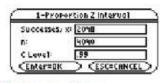
1 Proportion z-Interval

$$\hat{p} \pm z_{\alpha/2} \sqrt{\left(\frac{\hat{p}(1-\hat{p})}{n}\right)}$$

On the TI-84 press the [STAT] key, arrow over to the [TESTS] menu, arrow down to the [A:1-PropZInterval] option and press the [ENTER] key. Then type in the values for X, sample size and confidence level, arrow down to [Calculate] and press the [ENTER] key. The calculator returns the answer in interval notation. Note: sometimes you are not given the x value but a percentage instead. To find the x to use in the calculator, multiply \hat{p} by

the sample size and round off to the nearest integer. The calculator will give you an error message if you put in a decimal for x or n. For example if $\hat{p} = .22$ and n = 124 then .22*124 = 27.28, so use x = 27.

• On the TI-89 go to the [Apps] Stat/List Editor, then select 2nd then F7 [Ints], then select 5: 1-PropZInt. Type in the values for X, sample size and confidence level, and press the [ENTER] key. The calculator returns the answer in interval notation. Note: sometimes you are not given the x value but a percentage instead. To find the x value to use in the calculator, multiply \bar{p} by the sample size and round off to the nearest integer. The calculator will give you an error message if you put in a decimal for x or n. For example if $\bar{p} = .22$ and n = 124 then .22*124 = 27.28, so use x = 27.



Sample Size

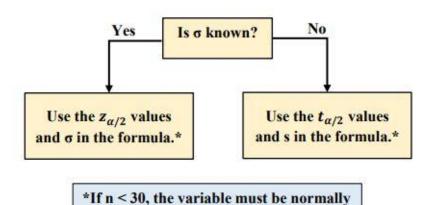
$$n = \left(\frac{z_{\alpha}\sigma}{E}\right)^2$$

$$n = \left(\frac{z_{1/2}\sigma}{E}\right)^{2} \qquad n = \hat{p}\left(1 - \hat{p}\right)\left(\frac{z_{\alpha/2}}{E}\right)^{2}$$

Always round n up to the next integer.

Hypothesis Testing

 $\alpha = P(Type I error)$

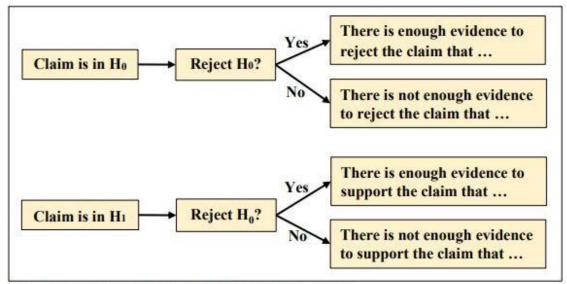


Look for these key words to help set up your hypotheses:

Two-tailed Test	Right-tailed Test	Left-tailed Test	
$H_0: \mu = \mu_0 H_1: \mu \neq \mu_0$	$H_0: \mu = \mu_0 H_1: \mu > \mu_0$	$H_0: \mu = \mu_0 H_1: \mu < \mu_0$	
	Claim is in the Null Hypothesis		
H=10.0	≤	≥	
Is equal to	Is less than or equal to	Is greater than or equal to	
Is exactly the same as	Is at most	Is at least	
Has not changed from	Is not more than	Is not less than	
Is the same as	Within		
Ci	aim is in the Alternative Hypothe	esis	
≠	>	<	
Is not	More than	Less than	
Is not equal to	Greater than	Below	
Is different from	Above	Lower than	
Has changed from	Higher than	Shorter than	
Is not the same as	Longer than	Smaller than	
	Bigger than	Decreased	
	Increased	Reduced	

The rejection rule:

- p-value method: reject H₀ when the p-value ≤ α.
- Critical value method: reject H₀ when the test statistic is in the critical tail(s).
- Confidence Interval method, reject H₀ when the hypothesized value found in H₀ is outside the bounds of the confidence interval.



Finish conclusion with context and units from question.

One Sample Tests:

1-Sample Mean t-test:
$$H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0$$
 Test statistic when σ is unknown: $t = \frac{\overline{x} - \mu_0}{\left(s / \sqrt{n}\right)}$ with df= n - 1

1-Sample Proportion z-test:
$$H_0: p = p_0 \\ H_1: p \neq p_0$$
 Test statistic is $z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}}$ where $\hat{p} = \frac{x}{n}$

Two Sample Tests:

2-Sample Means t-test - Independent Populations

$$\begin{array}{ll} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{array} \quad \text{or} \quad \begin{array}{ll} H_0: \mu_1 - \mu_2 = \left(\mu_1 - \mu_2\right)_0 \\ H_1: \mu_1 - \mu_2 \neq \left(\mu_1 - \mu_2\right)_0 \end{array} \quad \text{where usually you have} \quad \begin{array}{ll} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{array}$$

Note that $(\mu_1 - \mu_2)_0 = 0$ in most cases

Assuming Equal Variances

Test statistic when
$$\sigma_1^2$$
 and σ_2^2 are unknown: $t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\left(\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$

Assuming Unequal Variances

Test statistic when
$$\sigma_1^2$$
 and σ_2^2 are unknown: $t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ with
$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\left(\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2\right) + \left(\frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2\right)\right)}$$

2-Sample Means t-test - Dependent Populations

Find the difference (d) between each matched pairs.
$$H_0: \mu_D = 0 \\ H_1: \mu_D \neq 0$$
 Test statistic: $t = \frac{\overline{d} - \mu_0}{\left(s_d / \sqrt{n}\right)}$

2 Proportions

$$\begin{aligned} H_0: p_1 &= p_2 \\ H_1: p_1 \neq p_2 \end{aligned} \quad \text{Test statistic } z = \frac{\left(\hat{p}_1 - \hat{p}_2\right) - \left(p_1 - p_2\right)_0}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \,, \, \text{(usually } \left(p_1 - p_2\right)_0 = 0 \,) \quad \text{where } \, \hat{p} = \frac{x_1 + x_2}{n_1 + n_2} \,, \, \hat{q} = 1 - \hat{p} \end{aligned}$$

Correlation and Regression

H₀:
$$\rho = 0$$

H₁: $\rho \neq 0$ Test statistic for correlation: $t = r\sqrt{\frac{(n-2)}{(1-r^2)}}$ with df= n-2 $\hat{y} = a + bx$

 ρ = population correlation coefficient r = sample correlation coefficient

 $s = s_{est} = standard error of estimate R^2 = coefficient of determination$ a = v-intercept b = slope

One-Factor ANOVA table k=#of groups, N=total of all n's

 $H_0: \mu_1 = \mu_2 = \mu_3 = ... = \mu_k$

H₁: At least one mean is different CV: Always a right-tailed F, use Excel =F.INV.RT(α , df_B, df_W)

ANOVA Table

Source	SS	df	MS	F (Test Statistic)
Between (Treatment or Factor)	$SS_B=\Sigma n(\bar{x}-\bar{x}_{GM})^2$	k-1	$MS_B = SS_B / df_B$	$F = MS_B / MS_W$
Within (Error)	$SS_W=\Sigma(n-1)s^2$	N-k	$MS_W = SS_W / df_W$	
Total	SST	N-1		

When you reject H₀ for a one-factor ANOVA then you should do a multiple comparison. For example for 3 groups you would have the following 3 comparisons. (4 groups would have 4C2=6 comparisons)

 $H_0: \mu_1 = \mu_3$ $H_0: \mu_2 = \mu_3$ $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 \neq \mu_3$ $H_1: \mu_2 \neq \mu_3$

Bonferroni Test $t = \frac{\left(\bar{x}_t - \bar{x}_f\right)}{\left(\frac{1}{NSE}\left(\frac{1}{n} + \frac{1}{n}\right)\right)}$ with df = N - k and to get the p-value you would multiply the tail areas

by kC2 groups. For example if you use the tcdf in your calculator to find the area in both the tails and you have 4 groups you would multiply the tail areas by 4C2=6.