Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China)

John Bershaw a,⁎, Carmala N. Garzione a, Lindsay Schoenbohm b, George Gehrels c, Li Tao d

aDepartment of Earth and Environmental Sciences, University of Rochester, 227 Hutchison Hall, Rochester, NY 14627, USA
bDepartment of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, Ontario, Canada L5L 1C6
cDepartment of Geosciences, University of Arizona, Gould-Simpson Bldg. #77, 1040 E 4th St., Tucson, AZ 85721, USA
dState Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China

A R T I C L E I N F O

Article history:
Received 31 August 2010
Received in revised form 16 March 2011
Accepted 18 April 2011
Available online 29 April 2011

Keywords:
Provenance
Pamir plateau
Himalaya
Tibetan plateau
Tarim Basin
U–Pb ages
Detrital zircons
Stable isotopes
Palaeoalimnometry
Palaeoclimatology
Stratigraphy

A B S T R A C T

The Pamir salient is the western expression of mountain growth related to Indo-Eurasian convergence. Though a rough framework has emerged describing the tectonic evolution of the Pamir, detailed knowledge of the spatial and temporal evolution of Cenozoic deformation is necessary to determine how strain progressed through the orogenic belt. Here we present new stratigraphic, zircon provenance, and stable isotope data from Jurassic to Miocene strata along the Pamir’s northeastern margin near the town of Oytag (Wuyitake) in the Tarim Basin (west China). Prominent ~40 Ma peaks in Oligocene to early Miocene detrital zircon grains record the erosion of an Eocene belt of shoshonitic rocks in the central to southeastern Pamir. This is roughly coincident with an ~4% shift in the oxygen isotopic composition (δ18O) of carbonates during the Eocene and/or Oligocene (from an average of ~8.7‰ to ~12.6‰), suggesting a reorganization of atmospheric circulation during that time. This could have been caused by uplift of Tarim Basin-bounding ranges and/or retreat of the Paratethys Sea. A subsequent change from Eocene to Jurassic aged detrital zircon grains in the early to middle Miocene indicates provenance shifted from source rocks in the central and/or SE Pamir to the hanging wall of the Main Pamir Thrust (MPT), coincident with prograding facies at that time. This suggests deformation progressed outward toward the northeast margin of the Pamir plateau in the early to middle Miocene. Our results corroborate outward advancement of Himalayan deformation, affecting all margins of the Tarim Basin by the middle Miocene.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Cenozoic evolution of the Pamir plateau, like the Tibetan plateau, is tied to Indo-Eurasian convergence (Fig. 1). At an average elevation in excess of 4 km, the Pamir plateau impedes westerly atmospheric flow, contributing to the arid climate presently observed in the western Tarim Basin. A detailed history of plateau deformation is necessary to understand when the Pamir became a significant topographic barrier and how crustal heterogeneities have affected the style and spatial distribution of deformation through time. Better constraints on the timing of Pamir deformation will also provide insight into its genetic relationship to the neighboring Tibetan plateau and the Tian Shan.

The Pamir is composed of along-strike equivalents of Himalayan and Tibetan plateau tectonic terranes that accreted onto Eurasia during the Paleozoic and Mesozoic (Burtman and Molnar, 1993; Schwab et al., 2004; Robinson, 2009). Significant contraction during the Cenozoic has resulted in thrust and strike-slip faulting that generally follows the arcuate trend of the Pamir salient (Figs. 1 and 2). Thrusting of the Pamir’s leading edge over the Tian Shan to the north along the Main Pamir Thrust (MPT) continues today (Coutand et al., 2002), accommodating ~10% of the present convergence between India and Eurasia (Arrowsmith and Steckler, 1999).

The data presented in this study come from the Pamir’s northeastern margin, an area where major thrust, normal, and strike-slip faults coexist. The direction, timing, and magnitude of offset along many of these faults is still not well constrained. Temporal changes in the provenance of detrital zircons within foreland basin sedimentary rocks can be used to infer significant shifts in the assemblage of source terranes from which sediments are derived (e.g. Gehrels and Dickinson, 1995; Bruguer et al., 1997; Ireland et al., 1998). Here we present detrital zircon data from a previously measured stratigraphic section of Mesozoic sedimentary rocks (e.g. Sobel, 1995) and newly measured and described Cenozoic rocks on
the northeastern flank of the Pamir in the Tarim Basin near Oytag (Wuyitake, west China) (Fig. 2). Observed changes in detrital zircon provenance along with prograding sedimentary facies and an increase in sediment accumulation rate suggest Pamir deformation propagated outward (north–northeastward) in early to middle Miocene time.

Shifts in the isotopic composition (δ18O) of sedimentary carbonates have been used to constrain changes in regional topography, climate, and/or source(s) of moisture (Chamberlain and Poage, 2000; Garzione et al., 2000; Rowley et al., 2001; Kent-Corson et al., 2009). To evaluate the effects of outward growth of the Pamir plateau on regional climate, we examine the δ18O values of
sedimentary carbonates in the western Tarim Basin. Our δ18O results from carbonates collected in the Oytag stratigraphic section suggest that there was a reorganization of atmospheric circulation sometime during the Eocene or Oligocene, possibly related to surface uplift in the central to southeast Pamir, prior to the onset of Miocene deformation along the Pamir’s northeastern flank.

2. Geologic history

Much like the Tibetan plateau, the Pamir consist of a series of terranes that accreted onto Eurasia with collisional ages that young southward (Burtman and Molnar, 1993; Matte et al., 1996; Schwab et al., 2004). The northern-most Pamir was emplaced in the late Paleozoic with subsequent stages of convergence recurring throughout the Mesozoic. Periods of continental accretion and magmatic arc development in the late Paleozoic and Mesozoic were interspersed with rift basin development and the deposition of volcanics, often mantling ophiolite belts (Burtman and Molnar, 1993; Schwab et al., 2004).

Thermobarometry of lower crustal xenoliths suggests the southern Pamir plateau was substantially thickened by 50 Ma (Duca et al., 2003; Hacker et al., 2005; Searle et al., 2010), not long after the initiation of Indo-Eurasian convergence in the western Himalaya at ~54 Ma (Rowley, 1996; Searle et al., 1997). Apatite fission-track data from the Pamir’s eastern margin suggest Cenozoic shortening initiated in the middle to late Paleogene and continues through the present (Sobel and Dumitru, 1997; Yin et al., 2002). This is corroborated by (U–Th)/He cooling ages of apatite and zircon that suggest pulses of exhumation have occurred during Eocene and early to mid-Miocene time in the northern Pamir (Amidon and Hynck, 2010).

Dextral strike-slip movement in the east along the Karakorum fault and Khashgar-Yecheng transfer system accommodates up to ~280 km of internal shortening and northward translation of the Pamir relative to the Tarim Basin (Sobel and Dumitru, 1997; Murphy et al., 2000; Robinson, 2009; Cowgill, 2010). Paleomagnetic data suggest the Tajik depression off the Pamir’s western margin was rotated ~52° counter-clockwise since the Miocene (Thomas et al., 1994; Burtman, 2000). Sinistral strike-slip movement along the Darvaz fault in the west may have translated the western Pamir northward relative to the Tadjik basin (Burtman and Molnar, 1993), though Thomas et al. (1994) show the Darvaz as a thrust fault. East–west extension began in the late Miocene along the Kongur Shan normal fault (Robinson et al., 2004), possibly the result of radial expansion of thickened crust under the plateau. Global Positioning System (GPS) data show the northern Pamir is currently converging with the Tian Shan at a rate of 13 ± 4 mm/a (Reigber et al., 2001).

3. Stable isotopes as a proxy for elevation and climate

We use the isotopic composition of modern water and sedimentary carbonates to infer changes in surface topography, atmospheric circulation, and climate throughout the Pamir and the western Tarim Basin. Following is a general description of the types of samples analyzed for stable isotopes in this study. The results are presented in Section 6.2.

3.1. Oxygen and hydrogen isotopes of meteoric water

Surface elevation may be estimated in regions that conform to a simple Rayleigh distillation model of air mass depletion with a definable relationship between the isotopic composition of meteoric water (δ18Ow, δ2Hw) and elevation (Gonfiantini et al., 2001; Quade et al., 2007; Rowley and Garzione, 2007). This relationship may be complicated by subcloud and surface water evaporation in arid environments (Gat, 1996). Considering that annual precipitation on the Pamir plateau is <300 mm with most sites on the eastern margin and west Tarim receiving <100 mm annually (IAEA/VMO, 2006; NOAA/NCDC, 2010), evaporation and recycling of meteoric water under low relative humidity is significant. This introduces a kinetic effect which causes more fractionation than would occur under equilibrium conditions, resulting in relatively high δ18Ow and δ2Hw values of meteoric water (Gat, 1996; Clark and Fritz, 1997) which may obscure the relationship between isotopic composition and elevation (Quade et al., 2007).

3.2. Oxygen isotopes of sedimentary carbonates

The isotopic composition of oxygen from carbonate (δ18Oc) is a reflection of the environment in which it formed. As soil carbonates mineralize, they incorporate oxygen from soil water. The absolute depth of carbonate formation in the soil is variable, depending on precipitation amount and infiltration rate, but normally is concentrated in the lower B horizon (or Bk sublayer) (Gle et al., 1966). Cemented carbonate nodules form over tens of thousands of years providing an isotopic record of soil water during this time. Because soil water often correlates with meteoric water, δ18Oc values of paleosol carbonates are used to estimate the δ18O of ancient meteoric water (δ18Ow). This correlation may break down in regions of exceptional aridity, where the annual rainfall amount is <30 mm/year (Cerling and Quade, 1993; Quade et al., 2007). In these regions soil water may reflect significantly higher δ18Ow values associated with evaporative enrichment of 18O. Palustrine (ponds or marshes within flood plain settings) carbonates reflect both meteoric water and groundwater across a watershed. Evaporation may cause an increase in δ18Ow values, particularly in closed basins where water is lost by infiltration and evaporation (Talbot, 1990). Thus, only the most negative values are likely to reflect local rainfall compositions. Matrix cements (carbonates) from fluvial sandstones and mudstones integrate rainfall, surface water, and/or groundwater isotopic compositions (Mack et al., 2000). They precipitate during periods of waning flow and like palustrine carbonates, are subject to evaporative enrichment in arid settings. Pedogenic carbonates and shallow groundwater cements are isotopically similar (Quade and Roe, 1999). Because of their sensitivity to climate, the isotopic composition of sedimentary carbonates have been used to infer the timing of aridification of the Tarim Basin (e.g. Graham et al., 2005; Kent-Corson et al., 2009), whereby relatively high δ18Oc values may be associated with an increase in evaporative conditions. Secondary matrix cements may also precipitate from groundwater movement sometime after deposition. Care must be used when sampling as carbonates may be diagenetically altered under higher temperatures that can significantly modify the original isotopic composition, generally toward more negative values (Garzione et al., 2004).

4. Stratigraphy

Over 3700 m of Jurassic through Miocene sedimentary rocks (Fig. 3) are exposed by a major tributary to the Gez river that runs off the northeast flank of the Pamir plateau, joins the Gez river near Oytag, and continues into the Tarim Basin (Figs. 2 and DRI). The section unconformably overlies Triassic volcanics and forms the overturned western limb of a north plunging syncline (Sobel and Dumitru, 1997). The section itself is generally conformable with subvertical, overturned bedding orientations throughout. The ages of widespread sedimentary rock formations throughout the western Tarim Basin have been loosely constrained through biostratigraphy of marine rocks using calcareous
nannofossils, bivalves, ostracods, dinoflagellate cysts, benthic foraminifera (Hao et al., 1982; Mao and Norris, 1988; Zhong, 1989; Lan and Wei, 1995; Yang et al., 1995) and palynology of non-marine rocks (Zhou and Chen, 1990). Cenozoic strata exposed at Oytag (Wuyitake) consist of the Kashi Group, which can be subdivided into the Aertashi, Qimugen, Kalataer, Wulagen, and Bashibulake formations (Mao and Norris, 1988; Jia et al., 2004), and the younger Wuqia Group (Sobel, 1995).

Determining the presence of these formations in our measured section was done by comparing our results to stratigraphic sections from the literature for rocks at Oytag and other localities in the southwest Tarim Basin (i.e. Sobel, 1995; Yin et al., 2002; Jin et al., 2003). Correlation was supported by conspicuous markers including a prominent limestone unit at the K/T boundary, thick beds of gypsum with limestone interbeds in Paleocene and Eocene units and a fault contact/unconformity between the Bashibulake and Wuqia Group (Liu, 1990). A characteristic coarsening upward into terrestrial red-beds of the Oligo-Miocene Wuqia Group was also observed (Sobel, 1995). We know that the section at Oytag (Wuyitake) is older than ~20 Ma based on apatite fission track exhumation ages (Sobel and Dumitru, 1997) with maximum sedimentary rock ages derived from our own detrital zircon samples (Fig. 4; Table DR1).

4.1. Jurassic through early Eocene stratigraphy

Here, we include a brief summary of the Mesozoic and early Paleogene stratigraphy described and interpreted by Sobel (1999) and Sobel (1995) respectively with sections included in Fig. 3 (columns III–V). The Oytag section begins with green, organic-rich conglomerates of the Early Jurassic. The section fines upward into red and green, Middle and Late Jurassic mudstones and sandstones overlain by clast-supported conglomerate. These deposits are interpreted by Sobel (1999) to represent a braided fluvial environment proximal to its source. Paleocurrents were toward the southeast. Cretaceous strata include red fining upward sandstones with interbedded paleosols interpreted to be braided fluvial deposits (Sobel, 1999). Paleocurrents were generally toward the north and east. These deposits are overlain by gypsum-bearing mudstones followed by marine limestone in the Late Cretaceous. An unconformity marks the K-T boundary, above which ~80 m of fluvial conglomerates are deposited. This is followed by additional gypsum-bearing mudstone, limestone, and fan-delta conglomerates, suggesting a marine environment persisted into the late Paleocene and early Eocene (Sobel, 1995).

4.2. Oligocene through Miocene stratigraphy

Though our Oligocene through Miocene stratigraphic section begins approximately where Sobel's (1995) ends, the Wulagen Formation is missing which suggests a gap in measured section exists between columns II and III (Fig. 3). We have divided Oligocene through Miocene rocks (columns I and II) into three facies associations [F1–F3] using conventions from Millar (1985) and Uba et al. (2005). Facies associations (described in Section 4.2.1) are included in our stratigraphic section (Fig. 3 columns I and II) and summarized.
Paleoflow directions were estimated using the dip and dip directions of at least 10 clasts within imbricated conglomerates.

4.2.1. Facies associations

[F1] Lenticular sandstone beds pinch out over 10s of meters and are interbedded with lenticular beds of conglomerate (2–6 m thick) that are poorly sorted, clast-supported, with sub-rounded clasts, and often show cross-bedding. Thick successions (>100 m) of red, fine-grained cross-bedded sandstone with burrows (Fig. 5A) and laterally continuous red mudstone beds are present. The [F1] facies association coincides with previous descriptions of the Bashibulake formation at Oytag (Sobel, 1995). Fossil assemblages in the Bashibulake formation suggest a neritic environment (Hao and Zeng, 1980). We interpret this to be a marginal marine lower to upper delta plain setting, consisting of sandy channel fills and mud-sized overbank deposits (Jones et al., 2001; Mack et al., 2003; Uba et al., 2005).

[F2] Brown, green, and red sandstone beds pinch out over 10s to 100s of meters. They are thickly bedded and usually horizontally laminated to massive and occasionally interbedded with sub-meter thick conglomerate that pinches out over 10s of meters. Asymmetric ripples (Fig. 5B), cross-bedding, dewatering structures, occasional pebbly layers, and scoured bases are also observed within fining upward sandstone beds. Massive, laterally continuous mudstone beds are also present but are less frequent. Sandstones are interpreted to represent channel fill deposits within a meandering river environment, while mudstones represent overbank deposits (Miall, 1996; Jones et al., 2001; Mack et al., 2003; Uba et al., 2005; Nichols and Fisher, 2007).

[F3] Conglomerate beds stack to form multistory lenticular bodies that fine upward over 10–20 meters. Pebble to cobble conglomerates are clast-supported, often imbricated, and are typically overlain by fine- to coarse-grained red and brown sandstone with floating pebbles (Fig. 5C; Fig. 5D). These successions may be separated by thick intervals (up to 60 m) of medium-grained sandstone with massive, laterally continuous red mudstone interbeds. These facies are interpreted to represent a braided fluvial fan made up of gravelly bars, sandstone bar-top deposits, and sheet-flood deposits consisting of laterally continuous mudstone (DeCelles et al., 1991; Miall, 1996; Jones et al., 2001; Nichols and Fisher, 2007). Fining upward successions likely result from waning flow associated with channel abandonment (Uba et al., 2005).

5. Analytical methods

We sampled five sedimentary rocks from our measured section at Oytag, one sedimentary rock sample that unconformably overlies the section (PMR-01), and 2 meta-sedimentary rocks from

Fig. 4. Zircon age relative probability plot. Samples labeled Kunlun terrane were collected from the Muji Valley. Other samples are from the Oytag stratigraphic section (Figs. 3 and DR1). n = the number of zircon grains analyzed per sample.
the Kunlun terrane on the plateau for detrital zircon analysis. We also sampled two granitic source terranes that intrude east of the section for U–Pb analysis (Fig. 4; Table DR1). In addition, 15 carbonates were sampled for stable isotope (δ^{18}O) analysis (Fig. 6; Table 1). For comparison, 12 modern stream water samples were collected from small tributaries, with catchment areas <100 km2, along the Gez River and were analyzed for their δ^{18}O and $\delta^{2}H$ values (Table 2). Though $\delta^{2}H$ results are not discussed here, we have included them for reference.

5.1. Detrital and primary zircon collection and analysis

U–Pb ages of zircons were determined by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) at the Arizona LaserChron Center. 100 randomly selected zircon crystals from each sample were analyzed (Gehrels et al., 2008). For each analysis, the measurement error in determining $^{206}Pb/^{238}U$ and $^{206}Pb/^{204}Pb$ is ±1–2% (at 2σ level). Common Pb correction is accomplished by using the measured ^{204}Pb and assuming an initial Pb composition from Stacey and Kramers (1975). Uncertainties shown in Table DR1 are at the σ level, and include only measurement errors. Interpreted ages are based on $^{206}Pb/^{238}U$ for <1000 Ma grains and on $^{206}Pb/^{207}Pb$ for >1000 Ma grains. Analyses that are >30% discordant or >5% reverse discordant are not considered further. Liberal cutoffs for discordance were utilized to ensure that older ages were not preferentially excluded due to Pb loss. The resulting interpreted ages are shown on a relative age-probability diagram (Fig. 4) (from Ludwig, 2003). Plots were constructed by: (1) calculating a normal distribution for each analysis based on the reported age and uncertainty and (2) summing the probability distributions of all acceptable analyses into a single curve.

5.2. Paleosol, palustrine, and matrix carbonates

Pedogenic carbonate samples were collected from the bottom of paleosol beds, >30 cm from the top to minimize the effects of diffusion and evaporation (Cerling and Quade, 1993). All rock samples were examined under a stereoscopic microscope to identify and avoid sampling diagenetic phases of carbonate (sparite) and/or calcite veins. Samples were crushed to powder and reacted with 30% H$_2$O$_2$ for 20 min to remove organics. Analyses were carried out at the University of Rochester SIREAL laboratory on a Thermo Delta plus XP mass spectrometer in continuous-flow mode via a Thermo GasBench peripheral and a GC-PAL autosampler. Isotopic results for oxygen are reported using standard delta (δ^{18}O) notation with respect to Vienna Pee Dee Belemnite (VPDB) (Fig. 6; Table 1). Three in-house standards calibrated to NBS-19 and NBS-18 were used to calculate the δ^{18}O$_{\text{VPDB}}$ of samples. The analytical precision (at 1σ) for δ^{18}O$_{\text{VPDB}}$ values is ≤0.1‰.

5.3. Modern stream water

Gez river water was collected in the fall of 2006 along a transect from the Tarim Basin onto the Pamir plateau (Fig. 2). We followed
the approach of Garzione et al. (2000) by sampling small catchments (<100 km²) in order to minimize the elevation range and catchment area represented by each water sample. The isotopic analyses were conducted at the University of Rochester SIREAL laboratory. For oxygen analyses, ~0.5 mL of each water sample was loaded into a 12 mL Exetainer™ and flushed with a mixture of 0.3% CO₂ and UHP helium. Tubes were allowed to equilibrate for at least 18 h at ambient room temperature prior to analysis. Headspace CO₂ gas was then drawn into a Thermo Delta plus XP mass spectrometer in continuous-flow mode via a Thermo Gas Bench.
correlation between young \(^{206}\)Pb/\(^{238}\)U age and higher U concentrations are interpreted to have been affected by Pb loss given an inverse relationship (PMR-08 and PMR-23) (Fig. 2). Some zircon crystals from PMR-08 (258 ± 6 Ma (PMR-23) (Fig. DR3A and B, and Table DR1). We have excluded crystals with U concentration >800 ppm from age calculations as lead loss results in erroneously young ages. For both igneous samples, most crystal ages are between 240 and 260 Ma, resulting in mean ages of 244 ± 4 Ma (PMR-25) and 258 ± 6 Ma (PMR-23) (Fig. DR3A and B, and Table DR1). These results are consistent with previously published analyses (Table 2).

5. Zircon ages and provenance

6. Results

6.1. Zircon ages and provenance

Of eight samples analyzed, two are primary igneous rocks (PMR-08 and PMR-23) (Fig. 2). Some zircon crystals from PMR-08 are interpreted to have been affected by Pb loss given an inverse correlation between young \(^{206}\)Pb/\(^{238}\)U age and higher U concentration (Fig. DR2). We have excluded crystals with U concentration >800 ppm from age calculations as lead loss results in erroneously young ages. For both igneous samples, most crystal ages are between 240 and 260 Ma, resulting in mean ages of 244 ± 4 Ma (PMR-08) and 258 ± 6 Ma (PMR-23) (Fig. DR3A and B, and Table DR1). These results are consistent with previously published U–Pb ages (245 ± 5 Ma from Robinson et al., 2004) and a bit younger than K–Ar ages (267 Ma from Chang, 1994) for the same plutons. These rocks are part of the Kunlun terrane which extends from the northern Pamir across to northeast Tibet and is made up of both Paleozoic and Triassic aged volcanic arcs (Yin and Harrison, 2000; Schwab et al., 2004). Samples PMR-13 and PMR-20 are meta-sedimentary rocks from the Pamir hinterland (Fig. 2; Table DR1). Both samples contain detrital zircon ages clustered around ~440 Ma (Fig. 4), corresponding to older Kunlun terrane volcanics (Yin and Harrison, 2000; Schwab et al., 2004). Sample PMR-13 also has a population of grains at ~220 Ma with relatively low U/Th ratios (<4), suggesting it samples the younger volcanic arc of the Kunlun terrane as well. Sample PMR-20 does not contain any Triassic ages. Detrital grain age populations also exist at ~950 Ma, ~1.9 Ga, and ~2.5 Ga. Five of the ten samples represent detrital zircons from the Jurassic through Miocene stratigraphic section near Oytog (Figs. 3 and DR1). The oldest of these, sample PMR-25 (Jurassic) shows a conspicuous peak at ~250 Ma that coincides with Triassic magmatism recorded in Kunlun terrane rocks (Fig. 4). Cretaceous sample PMR-26 has a more equal distribution of grain ages including both Triassic volcanics and Paleozoic meta-sedimentary rocks. An ~40 Ma peak becomes prominent in Oligocene to early Miocene samples PMR-40 and PMR-33, consistent with their designation as members of the Eocene–Oligocene Bashibulake Formation and Miocene Wuqia Group respectively (Fig. 3) (Hao et al., 1982; Zhong, 1989; Lan and Wei, 1995). U/Th ratios of these grains are very low (<2), indicating they are primary igneous ages, not metamorphic (e.g. Hoskin and Black, 2000). No other samples from this study include zircons of this age. The source of these zircons may be the central to southeastern Pamir as U/Pb ages of shoshonitic rocks from the Muskol Antiform (Fig. 2) are late Eocene to early Oligocene in age (Ratschbacher, unpublished data). In addition, Budanov et al. (1999) report a 200 km long belt of late Eocene shoshonitic rocks dated using the palynology of interbedded sedimentary rocks trending southeast from the central Pamir near Murgab, though their exact location is not apparent from this publication. Early Eocene alkaline volcanics dated using \(^{40}\)Ar/\(^{39}\)Ar (Zhang et al., 1996) that outcrop in the Tashkorgan Valley may be an extension of this belt (Fig. 2). Igneous rock grains ~39 Ma in age have also been documented in western Pamir sediments derived from the central Pamir (Luken et al., 2009). It is also possible that the source of these ~40 Ma grains in the Oytog stratigraphic section has since been removed by erosion or is not yet documented, as high resolution mapping and geochronology in many parts of the Pamir is nonexistent. This makes interpretation of the source of these grains highly speculative. The youngest sample from the Oytog section (PMR-46) does not contain detrital zircon grains younger than 200 Ma (Fig. 4). Rather, it shows a prominent peak at ~250 Ma, similar to the Jurassic-aged sample PMR-25. This suggests that ~40 Ma volcanic sources were cut off from the basin in association with renewed exhumation of the Kunlun terrane’s Triassic volcanic arc. Sample PMR-01 was collected from strata that unconformably overlies the Oytog section (Fig. DR1), but lacks upper age limit constraints. Like PMR-46, it does not contain ~40 Ma zircon grains, but shows more distributed source terrane ages, all older than 200 Ma.

Table 1

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>(\delta^{18}O_{\text{VSMOW}})</th>
<th>Age Sample type</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMR-02</td>
<td>-11.66</td>
<td>Miocene</td>
<td>38.9937</td>
<td>75.5434</td>
</tr>
<tr>
<td>PMR-03</td>
<td>-10.58</td>
<td>Miocene</td>
<td>38.9663</td>
<td>75.4694</td>
</tr>
<tr>
<td>PMR-27</td>
<td>-1.04</td>
<td>Late Cretaceous</td>
<td>38.9521</td>
<td>75.5061</td>
</tr>
<tr>
<td>PMR-29</td>
<td>-2.84</td>
<td>Cretaceous</td>
<td>38.9790</td>
<td>75.4780</td>
</tr>
<tr>
<td>PMR-30</td>
<td>-11.78</td>
<td>Miocene</td>
<td>38.9817</td>
<td>75.5215</td>
</tr>
<tr>
<td>PMR-31</td>
<td>-13.15</td>
<td>Miocene</td>
<td>38.9827</td>
<td>75.5194</td>
</tr>
<tr>
<td>PMR-34</td>
<td>-11.25</td>
<td>Early Miocene</td>
<td>38.9841</td>
<td>75.5152</td>
</tr>
<tr>
<td>PMR-37</td>
<td>-12.39</td>
<td>Oligocene</td>
<td>38.9858</td>
<td>75.5054</td>
</tr>
<tr>
<td>PMR-38</td>
<td>-13.26</td>
<td>Oligocene</td>
<td>38.9861</td>
<td>75.5037</td>
</tr>
<tr>
<td>PMR-41</td>
<td>-12.42</td>
<td>Oligocene</td>
<td>38.9868</td>
<td>75.4969</td>
</tr>
<tr>
<td>PMR-42</td>
<td>-9.40</td>
<td>Paleocene</td>
<td>38.9788</td>
<td>75.4806</td>
</tr>
<tr>
<td>PMR-43</td>
<td>-1.97</td>
<td>Cretaceous</td>
<td>38.9808</td>
<td>75.4914</td>
</tr>
<tr>
<td>PMR-44</td>
<td>-8.44</td>
<td>Eocene</td>
<td>38.9825</td>
<td>75.4881</td>
</tr>
<tr>
<td>PMR-47</td>
<td>-14.25</td>
<td>Miocene</td>
<td>38.9884</td>
<td>75.5384</td>
</tr>
<tr>
<td>PMR-48</td>
<td>-12.33</td>
<td>Miocene</td>
<td>38.9883</td>
<td>75.5347</td>
</tr>
</tbody>
</table>

* Refer to Section 4 for an explanation of age determinations.

Table 2

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>VSMOW</th>
<th>(\delta^{18}O_{\text{VSMOW}})</th>
<th>Elevation (m)</th>
<th>Catchment size (km(^2))</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW-02</td>
<td>-8.08</td>
<td>-45.06</td>
<td>2088</td>
<td>90.7</td>
<td>38.8116</td>
<td>75.4447</td>
</tr>
<tr>
<td>PW-05</td>
<td>-8.80</td>
<td>-51.35</td>
<td>2399</td>
<td>10.6</td>
<td>38.7840</td>
<td>75.2851</td>
</tr>
<tr>
<td>PW-08</td>
<td>-12.47</td>
<td>-82.27</td>
<td>2595</td>
<td>53.7</td>
<td>38.7685</td>
<td>75.2308</td>
</tr>
<tr>
<td>PW-11</td>
<td>-5.33</td>
<td>-26.58</td>
<td>3053</td>
<td>1.2</td>
<td>38.7490</td>
<td>75.1395</td>
</tr>
<tr>
<td>PW-14</td>
<td>-10.94</td>
<td>-68.32</td>
<td>3249</td>
<td>4.8</td>
<td>38.7432</td>
<td>75.0492</td>
</tr>
<tr>
<td>PW-17</td>
<td>-14.29</td>
<td>-97.17</td>
<td>3454</td>
<td>8.4</td>
<td>38.9791</td>
<td>74.5296</td>
</tr>
<tr>
<td>PW-20</td>
<td>-13.02</td>
<td>-96.63</td>
<td>3486</td>
<td>18.2</td>
<td>38.9555</td>
<td>74.4433</td>
</tr>
<tr>
<td>PW-23</td>
<td>-12.23</td>
<td>-82.72</td>
<td>4075</td>
<td>42.5</td>
<td>39.1704</td>
<td>74.5539</td>
</tr>
<tr>
<td>PW-24</td>
<td>-10.99</td>
<td>-71.43</td>
<td>3363</td>
<td>8.3</td>
<td>38.8405</td>
<td>74.8483</td>
</tr>
<tr>
<td>PW-28</td>
<td>-6.70</td>
<td>-37.51</td>
<td>3179</td>
<td>81.9</td>
<td>38.7516</td>
<td>75.0997</td>
</tr>
<tr>
<td>PW-30</td>
<td>-10.00</td>
<td>-62.31</td>
<td>1900</td>
<td>26.0</td>
<td>38.8723</td>
<td>75.4444</td>
</tr>
<tr>
<td>PW-35</td>
<td>-11.57</td>
<td>-72.48</td>
<td>2704</td>
<td>57.1</td>
<td>38.9014</td>
<td>75.2102</td>
</tr>
</tbody>
</table>
6.2. Isotopic compositions of modern and paleo-waters

Of 15 carbonate samples that were analyzed for δ18O, eight are fluvial mudstone cements, five are fluvial sandstone cements, one is a paleosol, and one is limestone (Figs. 6 and DR1; Table 1). With the exception of PMR-43 and PMR-27, the δ18Oc values of Cretaceous through early Eocene paleosol and mudstone samples are fairly consistent (average = −8.7 ± 0.6‰). Of the two exceptions, PMR-27 is a marine limestone with a relatively positive δ18Oc value of −1.0‰ and PMR-43 is a calcareous mudstone with a comparable δ18Oc value of −2.0‰, suggesting its carbonate precipitated from marine water. A negative shift of −4‰ occurred sometime in Eocene to Oligocene time between the deposition of samples PMR-41 and PMR-44. Although Oligo-Miocene fluvial sandstones and mudstones show more variation (average = −12.6 ± 3‰), all are more negative than older samples.

Water sampled from a small tributary near the stratigraphic section (PW-30) has a δ18Ow (VSMOW) value of −10‰ (Table 2). We converted this to calcite (δ18Oc, VPDB = −11.1‰) using the temperature-dependent fractionation equation (Kim and O’Neil, 1997) for comparison to carbonate samples. A mean annual temperature of 19 °C is assumed, which is the average temperature for relatively dry months (July, September and October) following a weakly bimodal rainy season in Kashgar (Kashi (NOAA/NCDC, 2010). Drier months reflect the time period during which carbonates are most likely to precipitate (Breecker et al., 2009). The average δ18Oc value of samples Oligocene and younger is ~1.5‰ more negative (δ18Oc, VPDB = −12.6 ± 3‰) than calcite calculated from modern meteoric water nearby (Fig. 6).

Two water samples collected from tributaries along the range front (PW-11 and PW-28) during a rainfall event show anomalously high δ18Oc values (~5.3‰ and ~6.7‰ respectively), likely reflecting runoff from that specific precipitation event as opposed to a yearly weighted average as inferred for groundwater. Excluding these two samples, stream water is generally more negative at higher elevations (>3000 m) on the plateau (average = −12.3‰) when compared to lower elevation sites (<2500 m) in the Pamir foreland (average = −9.0‰), though a regression through the data-set does not produce a robust relationship between elevation and δ18Ow (R² = 0.48 from Fig. 7). As discussed earlier, arid conditions throughout the region likely affect the isotopic composition of precipitation and surface water (Araguás-Araguás et al., 1998; Tian et al., 2007).

7. Discussion

7.1. Mesozoic history

The depositional setting of the Oytag basin during the Mesozoic evolved from a meandering and braided fluvial environment in the Middle Jurassic and Early Cretaceous to a marine setting in the Late Cretaceous with paleo directions shifting from the southeast to north–northwest respectively. The provenance of Oytag basin sediments during the Mesozoic is characterized by a transition from deposits derived almost exclusively from nearby Triassic igneous rocks during the Jurassic to sources in Paleozoic and Mesozoic terranes during the Late Cretaceous. West of Oytag, the Main Pamir Thrust (MPT) and associated fault splays place Kunlun terrane rocks over Jurassic volcanics (Fig. 2). Sobel and Dumitru (1997) suggest that the Jurassic stratigraphic section was derived from these Paleozoic and Triassic volcanics based on compositional similarities and sedimentary facies which suggest proximity. This inference is partly supported by sample PMR-25 which is dominated by Triassic detrital grain ages, all with U/Th ratios <2 (Fig. 4, Table DR1). However, the near absence of Paleozoic ages in this sample suggests older volcanics currently mapped in the hanging wall of the MPT did not contribute. Whether an ancestral MPT was active at this time, facilitating exhumation of Kunlun terrane rocks, is unknown. It has been suggested that sedimentary rocks near Oytag have been translated northward since deposition, in which case their provenance may be from source terranes far to the south (Sobel and Dumitru, 1997). Erosion of Kunlun terrane rocks continued throughout the Late Cretaceous (see PMR-26 in Fig. 4), at which point the first of many marine transgressions penetrated west Tarim (Burtman and Molnar, 1993; Sobel, 1995; But-}

![Fig. 7. Modern stream water samples from small tributaries (<100 km²) were collected up the eastern flank of the Pamir plateau (Fig. 2 for locations) during the fall of 2006. δ18Ow (VSMOW) values are plotted against sampling elevation (data from Table 2). Two samples (open diamonds) were collected along the range front while rain was observed. The regression shown by a solid line excludes these anomalously positive samples. A second regression shown by the dotted line (R² = 0.132) represents the entire dataset.](image-url)
These results preclude significant exhumation along the MPT near Oytag at this time as late Eocene igneous rocks have not been found anywhere in the MPT hanging wall (Sobel and Dumitrut, 1997; Robinson et al., 2007; Cowgill, 2010). The lack of exhumation on the MPT in late Eocene time is inconsistent with the interpretation by Yin et al. (2002) that an increase in basin subsidence ~150 km southeast at Aertashi (Fig. 2) at ~37 Ma was associated with activity along frontal thrusts like the MPT.

Oytag basin provenance and stratigraphy document propagation of deformation from the central and southeastern Pamir in the Oligocene to the MPT and associated frontal thrust faults sometime in the Miocene. Convergent deformation in the southeastern Pamir had already formed thick crust (70 km) by ~50 Ma (Ducea et al., 2003; Hacker et al., 2005; Searle et al., 2010). Our results suggest that the central Pamir continued to experience exhumation throughout the Eocene as detrital zircon grains from 40 Ma igneous rocks in the central to southeast Pamir are found in Oytag sediments. In the Miocene, late Eocene zircon grains disappear from Oytag strata and Triassic ages from the Kunlun terrane become dominant again (sample PMR-46 in Fig. 4). A likely source is the hanging wall of the MPT and associated fault splays, suggesting that thrusting initiated or was reactivated in the Miocene, consistent with thermochronologic evidence (Sobel and Dumitrut, 1997; Robinson et al., 2007) and a coeval change in provenance at Aertashi (Yin et al., 2002).

A basin-ward propagation of deformation during the early to mid-Miocene is corroborated by stratigraphy at Oytag which records a transition from marine to continental sedimentation from late Eocene to early Miocene time. Following the deposition of marine limestone in the Eocene, the Eocene–Oligocene Bashibulake Formation shifts to a marginal marine environment with a thick succession of mudstone and sandstone ([F1] in Fig. 3 and Table 3). The stratigraphic succession coarsens upward over ~1 km into continental braided stream and/or alluvial fan facies of the Wuqia Group [F3]. Prograding facies at Oytag coincide with a marine regression interpreted throughout the Tarim Basin (Watson et al., 1987; Bosboom et al., 2010). Paleoflow directions are consistently east-northeastward throughout the Cenozoic (Fig. 3). We interpret Oytag stratigraphy to represent a prograding succession of transverse river systems along the western margin of the Tarim Basin with sources in the Pamir, much like the modern Gez and Tashkorgan river systems (Fig. 2). Stratigraphy at Aertashi shows a similar trend from marine rocks in the middle Eocene to terrestrial fluvial and alluvial fan deposits in the Miocene (Sobel, 1995; Yin et al., 2002). Though poorly constrained, an increase in sediment accumulation rate accompanies this facies transition at Oytag from more than 30 m/Ma during the Oligocene to at least 75 m/Ma in the Miocene (Fig. 6). This may be due to increased crustal loading and exhumation along the MPT and Kashgar-Yecheng Transfer System (Fig. 2).

7.2.1. Oxygen isotopes

Oxygen isotope values (δ18O) of matrix cements from Oytag record an ~4‰ shift to more negative values during Eocene or Oligocene time (Fig. 6). Though this is roughly synchronous with a transition from marine to non-marine facies throughout western Tarim (Yin et al., 2002; Heermance et al., 2007), the observation that limestone δ18O (PMR-27) is significantly more positive than early Paleogene matrix cements indicates that Paleogene carbonates were not precipitating from marine water. However, a marine regression could cause the source of water vapor to shift from local (Paratethys) to more distal (proto-Atlantic and/or Indian Ocean), resulting in a decrease in the δ18O value of rainfall during the Oligocene. A negative shift in δ18O values could also be caused by Paleogene surface uplift of basin-bounding ranges as inferred for sites across the southern Tarim Basin (Kent-Corson et al., 2009). This interpretation is consistent with erosion of the central to southeast Pamir inferred from 40 Ma detrital zircons in Oligo-Miocene sedimentary rocks from our stratigraphic section. It also slightly precedes the onset of aridification throughout the Tarim Basin and central Asian interior inferred from loess deposits in late Oligocene and/or early Miocene time (Guo et al., 2002; Sun et al., 2010).

The δ18Ow of a small tributary near Oytag (PW-30) converted to δ18O, VPDβ (~11.1‰) is ~1.5‰ more positive than δ18O values in rocks younger than ~40 Ma (average = -12.6 ± 3‰), suggesting that δ18O, of precipitation has not varied dramatically in west Tarim since the Oligocene (Fig. 6). This implies that high relief was already established in the Pamir by this time and that deformation along the MPT, beginning in the Miocene, did not significantly affect local climate or atmospheric circulation. Unfortunately, low sample density and age uncertainty in Neogene rocks does not allow us to resolve more recent trends.

7.2.2. Regional implications

Our data suggest that central and/or southeast Pamir igneous rocks were eroded during Oligocene and early Miocene time, synchronous with widespread deformation across northern Tibet. The Altyyn-Tagh fault, located along Tibet’s northwest margin (Fig. 1), has been active since the latest Oligocene (Yin et al., 2002; Ritts et al., 2004; Yue et al., 2005) and Eocene deformation...
and exhumation in northeast Tibet has been documented along faults (Clark et al., 2010) and in basin development (Fang et al., 2003; Horton et al., 2004; Dai et al., 2006). In the Pamir, deformation propagated toward the Tarim Basin to the MPT by middle Miocene time, concurrent with deformation along the south and southeast margins of the Tarim Basin (George et al., 2003; Jolivet et al., 2001; Ritts et al., 2008) and the far northeastern edge of the Tibetan plateau (Zheng et al., 2006). Significant deformation further north throughout the Tian Shan also began in the middle Miocene (Sobel and Dumitrut, 1997; Abdramkhatov et al., 2001; Bullen et al., 2001; Heermann et al., 2007), at the same time that deformation propagated from the central and southeast Pamir toward the Tarim Basin. This suggests that stress along the flanks of the Pamir and Tibetan plateaus were quickly transferred across the relatively rigid Tarim plate to the Tian Shan. Our results do not preclude deformation in the central Pamir during this time, leaving open the possibility of synchronous Miocene deformation throughout the Pamir plateau, as is observed in Tibet (Kapp et al., 2007). However, deformation seems to have propagated northeastward from the Olgocene into the Miocene, resulting in outward growth of the Pamir plateau.

8. Conclusions

Conspicuous ~40 Ma detrital zircon grains in sedimentary rocks from the Pamir foreland indicate that deformation was focused in the central to southeast Pamir during the Oligocene to early Miocene (Fig. 4). There is no evidence of thrusting along northeast Pamir frontal thrusts (MPT) at this time as late Eocene intrusive rocks are absent from the MPT hanging wall (Sobel and Dumitrut, 1997; Robinson et al., 2007; Cowgill, 2010). Oligocene to early Miocene deformation of the central Pamir was roughly coincident with an ~4‰ shift to more negative δ18O values in sandstone and mudstone grains from the same stratigraphic section (Fig. 6). This shift in δ18O may have been related to surface uplift of the central to southeast Pamir and other Tarim basin-bounding ranges during the Paleogene (Kent-Corson et al., 2009). It is also consistent with a marine regression at Oytag (Wuyitake) as suggested by a transition from marine rocks in the Eocene (Sobel, 1999) to terrestrial, braided fluvial deposits in the early Miocene (Fig. 3, Table 3), and prograding facies throughout the Tarim Basin (Watson et al., 1987; Bosboom et al., 2010).

In the early to middle Miocene, detrital zircons sourced from late Eocene igneous rocks disappeared from Oytag strata and Triassic detrital zircon grains eroded from Kunlun terrane rocks become prominent. This change in provenance indicates that Pamir frontal thrusts, such as the MPT, began accommodating convergence between the Pamir and the Tarim plate by early to middle Miocene time. Both provenance changes and prograding facies in the Oytag stratigraphy (Fig. 3; Table 3) suggest Pamir deformation propagated toward the Tarim Basin from the Olgocene into the Miocene. This is consistent with thermochronologic data at Oytag (Sobel and Dumitrut, 1997) and similar facies and compositional changes observed at Aertashi (Yin et al., 2002). Considered with Miocene crustal shortening on the northern margin of the Tibetan plateau (George et al., 2001; Jolivet et al., 2001; Zheng et al., 2006; Ritts et al., 2008) and the Tian Shan (Hendrix et al., 1994; Sobel and Dumitrut, 1997; Yin et al., 1998; Abdramkhatov et al., 2001; Bullen et al., 2001; Heermann et al., 2007), these results corroborate observations of the outward advancement of Indo-Eurasian deformation, affecting all margins of the Tarim Basin by middle Miocene time.

Acknowledgements

We are grateful to Chen Jie for help in the field. We would like to thank Alex Robinson, Ed Sobel, and Lothar Ratschbacher, for insightful discussions and suggestions. We are grateful to Penny Higgins for assistance with stable isotope lab work at the University of Rochester and Alex Pullen for help running zircon samples at the University of Arizona. This work was supported by NSF Grants EAR 0506575 and EAR 0908778 to Garzoni and EAR 0732436 to Gehrels (for support of the Arizona LaserChron Center) and a CSA Graduate Student Research Grant to Bershow.

Appendix A. Supplementary data

References

Bosboom, R.E. et al., 2010. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology.

Coutand, P. et al., 2002. Late Cenozoic tectonic development of the intramontane Alay Valley, (Pamir-Tien Shan region, central Asia): an example of intramountain deformation due to the Indo-Eurasia collision. Tectonics 21 (6), 1053.

Yin, A. et al., 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 17 (1).