SMART SWITCHING POWER ELECTRONICS

MAHIMA GUPTA
Assistant Professor, Department of Electrical and Computer Engineering
Portland State University
mahima@pdx.edu

November 20, 2020
ABOUT ME

- From New Delhi, India
- B.E. (Hons), Birla Institute of Technology and Science – Pilani, India
 - Intern, Tarapur Atomic Power Station, Maharashtra
- Researcher, University of Wisconsin – Madison
 - M.S. & Ph.D.
 - Teaching Assistant (9 semesters)
 - Visiting Scholar, Technische Universität Graz, Austria (Fall 2017)
 - Design Engineer (Intern), SolarEdge Technologies, California (Spring 2019)
- Researcher, Ford Motor Company
 - With Research & Advanced Engineering for 1 year
EXAMPLE PE BASED SYSTEM

Highly power dense
Highly efficient
Inexpensive
Reliable
Safe
COMPONENTS OF PE CONVERTER

Energy Transfer = 1 unit

1 unit = Power × T_s = \frac{\text{Power}}{f_s}

→ 1 unit of energy is power transfer per switching cycle

Energy Storage
≈ 100s - 1000s units
SOLID STATE SWITCHES

1958

Advancements in ICs

1972

Advancements in PE

- Thyristor devices
- IGBTs
- MOSFETs

→ Several kV (up-to 6.5kV)
→ Several kA (up-to 1.5kA)
ENERGY STORAGE ELEMENTS

Capacitors

Electrolytic capacitors → Bulk ES
Film capacitors → Decoupling

[4]
My objective: Lean PE by eliminating bulky ES elements!
EXAMPLE DC-DC PE CONVERTER

Switches:
- voltage and current ratings of the source/load
- New devices (ex. SiC MOSFETS) Compact thermal design

Source/Load Filter:
- total harmonic distortion (THD) specifications
- electromagnetic interference (EMI)
- Increase switching frequency

Energy Storage Element:
- Presumed to be big for robust circuit operation

Background ➔ Benchmarking Bulky PE ➔ Lean PE ➔ AC PE ➔ Results ➔ Lean² PE ➔ Conclusion
TYPICAL OPERATION

\[S_i = \{0, 1\} \]
\[S_o = \{0, 1\} \]

By using the concept of averaging [5]:

\[d_1 = \frac{V_i}{V_{\text{Cap}}} \]
\[d_2 = \frac{V_o}{V_{\text{Cap}}} \]

Rate of flow = \(f_S \)

Energy Storage element

Source \(f_{\text{Source}}^S \)

Load \(f_{\text{Load}}^S \)

\[f_{\text{Source}}^S = f_{\text{Load}}^S = f_S \]
2. Selecting the regulation technique
 - Hierarchical Implementation of Proportional Integral Regulator (P-I)
 - Outer DC Link Voltage regulation \rightarrow P-I (K_p & K_i)
 - Inner Input Current regulation \rightarrow P (K_w)
 - Simplifies output duty ratio control

3. Design must ensure adequate overall system regulation

Background \rightarrow Benchmarking Bulky PE \rightarrow Lean PE \rightarrow AC PE \rightarrow Results \rightarrow Lean² PE \rightarrow Conclusion
Dynamic Model of Regulator

Using State-Space equations [6]:

\[
L_i \frac{d i_i}{dt} = V_i - d_1 v_{Cap}^* \\
L_o \frac{d i_o}{dt} = d_2 v_{Cap}^* - i_o R \\
i_{Cap} = C \frac{d v_{Cap}}{dt} = d_1 i_i - d_2 i_o
\]

where,

\[
d_1 = \left\{K_p + \frac{K_i}{s}\right\} \left\{V_{Cap} - V_{Cap}^*\right\} - i_i K_w \\
d_2 = \frac{V_{2}^*}{V_{Cap}^*}
\]

\[
d\lambda = \int (v_{Cap} - V_{Cap}^*) dt
\]

Benchmarked the state-of-the-art approach with the objective of optimized capacitor size
MODEL FOR CAPACITOR SIZING

B) Small Signal Linearized Model

Small Signal Linearized Analysis: Superimposition of a load variation

\[r_L = R_L + \hat{r}_L \]

\[\Rightarrow x = X + \hat{x} \]

C) Sensitivity Analysis

\[
\begin{bmatrix}
\frac{\dot{i}_i}{\hat{i}_i} & \frac{\dot{i}_o}{\hat{i}_o} & \frac{\dot{v}_{Cap}}{\hat{v}_{Cap}} \\
\frac{\hat{i}_i}{\dot{i}_i} & \frac{\hat{i}_o}{\dot{i}_o} & \frac{\hat{v}_{Cap}}{\dot{v}_{Cap}} \\
\frac{\hat{v}_{Cap}}{\dot{v}_{Cap}} & \frac{\hat{\lambda}}{\dot{\lambda}} & \frac{\hat{\lambda}}{\dot{\lambda}}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{\dot{i}_i}{\hat{i}_i} & \frac{\dot{i}_o}{\hat{i}_o} & \frac{\dot{v}_{Cap}}{\hat{v}_{Cap}} \\
\frac{\hat{i}_i}{\dot{i}_i} & \frac{\hat{i}_o}{\dot{i}_o} & \frac{\hat{v}_{Cap}}{\dot{v}_{Cap}} \\
\frac{\hat{v}_{Cap}}{\dot{v}_{Cap}} & \frac{\hat{\lambda}}{\dot{\lambda}} & \frac{\hat{\lambda}}{\dot{\lambda}}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{\dot{r}_L}{\hat{r}_L} & \frac{\dot{r}_L}{\hat{r}_L} & \frac{\dot{r}_L}{\hat{r}_L}
\end{bmatrix}
\]
How will the dc link capacitor voltage behave during load transients?

\[
\frac{[\tilde{V}_\text{Cap}]}{\tilde{I}} = k_o s \left(\frac{s}{\omega_z} + 1 \right) \frac{s^4}{\omega_\alpha^4} + \frac{s^3}{\omega_\beta^3} + \frac{s^2}{\omega_\gamma^2} + \frac{s}{\omega_\delta} + 1
\]

\[
k_o = \frac{D_2 I_o}{D_1 K_i R}
\]

\[
\omega_z = \frac{K_w V^*_\text{Cap}}{L_i}
\]

\[
\omega_\alpha^4 = \frac{D_1 K_w K_i V^*_\text{Cap} R}{L_i L_o C L_i}
\]

Uncovering the secrets → Making model useful

Model Objectives

- Stable system
- Optimized transient peaks
- Develop design guidelines

» System is dominated by a single pole transfer function!
SYSTEM STABILITY

\[
\frac{[v_{\text{Cap}}]}{f} = \frac{ks\left(\frac{s}{w_z} + 1\right)}{s^4 + \frac{s^3}{\omega^3} + \frac{s^2}{\omega^2} + \frac{s}{\omega} + 1}
\]

\[
\omega^3_\beta \approx \frac{D_1K_w^*K_iV_{Cap}^*R}{K_w^*V_{Cap}^*C_{L_o} - K_pK_wI_iL_iL_o} > 0 \quad \text{For Stability!}
\]

\[
K_p < \frac{CV_{Cap}^*}{L_i|I_i|}
\]

\[
\Delta \text{Safety Margin} = \frac{0.8C \times 0.8V_{Cap}^*}{1.2L_i \times 1.2|I_i|}
\]

\[\Delta \text{Can depend on design specifications}\]

\[K_p \text{ has an upper bound} \rightarrow \text{Low Capacitance systems require lower } K_p\]
OPTIMIZED TRANSIENT PEAK

E) Characterizing system performance

How does \(V_{Cap} \) respond to load change?

\[
\frac{\bar{V}_{Cap}}{f} = \frac{ks \left(\frac{s}{\omega_z} + 1 \right)}{\omega_\alpha^4 + \frac{\omega_\beta^3}{\omega_\gamma} + \frac{\omega_\gamma^2}{\omega_\delta} + \frac{s}{\omega_\delta} + 1} \approx \frac{ks}{\omega_\delta} + 1
\]

Time Domain Translation (step change in load):

\[
L^{-1} \left\{ \frac{\bar{V}_{Cap}}{s^2f} \right\} = k_\delta e^{-\omega_\delta t}
\]

\(\Rightarrow \) Voltage overshoot \(\approx \frac{D_2I_0}{2D_2^2 + RK_pD_1} \)

Converter dynamics are dominated by single pole transfer function \(\rightarrow \) a result of asymptotic stability analysis

Assumptions for the regulator:

- Current regulator with good regulation accuracy
- Reduced transient peaks during transient conditions

Background \(\rightarrow \) Benchmarking Bulky PE \(\rightarrow \) Lean PE \(\rightarrow \) AC PE \(\rightarrow \) Results \(\rightarrow \) Lean\(^2\) PE \(\rightarrow \) Conclusion
TRADE-OFF

1. Ensure System Stability:

\[K_p < \frac{CV_{Cap}^+}{L_i|I_i|} \]

- \(C \downarrow \) \(K_p \downarrow \)

2. Limit Transient Peaks:

Voltage overshoot \(\approx \frac{D_2I_0}{2D_2^2 + RK_pD_1} \)

- \(K_p \downarrow \) \(\text{Transient Peak} \uparrow \)

Conflicting requirements \(\rightarrow \) Classical approach theoretically limits C-size reduction
TIME DOMAIN SIMULATIONS

State-of-the-art approach, without abundant energy storage, leads to poor performance!

Detrimental to:
- Lifetime
- Output quality
- Reliability
- Cost

Requires derating of capacitors, switches, etc.

Predicted by our analytical model
RESULTS

Load rejection (%)

Overshoot (%)

Capacitance (µF)

1000 100 10

400 units 40 units 4 units

Boost Operation with conventional approach

<table>
<thead>
<tr>
<th>Source Parameters</th>
<th>P</th>
<th>20 kW</th>
<th>1 unit (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>200 V</td>
<td>1 unit (V)</td>
<td></td>
</tr>
<tr>
<td>I_i</td>
<td>100 A</td>
<td>1 unit (A)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_o</td>
</tr>
<tr>
<td>I_o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link Voltage</th>
<th>V_Cap</th>
<th>400 V</th>
<th>2 unit (V)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Switching Frequency</th>
<th>f_S</th>
<th>100 kHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reactive Elements & Energy Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% Ripple</td>
</tr>
<tr>
<td>5% Ripple</td>
</tr>
</tbody>
</table>

C	1000 µF	400 unit (J)
	100 µF	40 unit (J)
	10 µF	4 unit (J)

Lower energy storage traditionally leads to poor system performance!
Tiny Energy Storage

~2-10 units of energy transfer

Rate of flow = f_s

Source f_s

Load f_s

Advantage
Absence of bulk energy storage (ES) → High power density system

Tradeoff
Careful transfer of energy is a must between the source and the load

Replace a big reservoir by a lean reservoir!
THREE NEW ASPECTS

Careful energy transfer between source and load = How do we regulate the energy level of a tiny ES element?

1. Synchronized transfer of energy to/from the ES element
2. Accurate calculation of time periods of energy transfer
3. Regulation required during uncertain model parameters and transient conditions

Averaging may not work!

\[d_1 = \frac{V_i}{V_{\text{Cap}}} \]
SWITCHING STATES

Background → Benchmarking Bulky PE → Lean PE → AC PE → Results → Lean² PE → Conclusion

Diagram showing the switching states of a circuit with inductors and capacitors.
SEQUENCED SWITCHING

Example:
voltage step-up (boost)

Charge interval σ_1

Discharge interval σ_2

Idle interval σ_0

Background → Benchmarking Bulky PE → Lean PE → AC PE → Results → Lean2 PE → Conclusion
Accurate Duty Ratio Calculation

\[d_j = \frac{2E_j f_S}{V_{ci} i_j} \left[1 - \sqrt{1 - \frac{e_j}{E_j}} \right] \]

During the \(j \)th interval,
- \(v_j \): voltage across \(C \)
- \(i_j \): current into \(C \)
- \(e_j \): Energy transfer to \(C \)
- \(E_j \): Energy stored in \(C \)

\(e_j = 0.2J \)

A) if \(C = 5\mu F, E_j = 0.4J \)
B) if \(C = 25\mu F, E_j = 2J \)

Conventional

\[\left[\frac{e_j}{E_j} \right] \ll 1 \]

Taylor Series

Averaged duty ratio

\[d_j \approx \frac{2E_j f_S}{V_{ci} i_j} \left[\frac{e_j}{2E_j} \right] \]

\[d_j \approx \frac{v_j}{V_N} \]
SEQUENCED SWITCHING REGULATION

Conventional Approach: Averaged \rightarrow Dynamics are $10x$ slower than f_s

Big bucket can work with slower dynamics

Lean Power Conversion:

Need faster dynamics for lean PE

Could we add regulation to control the flow rate at source/load to manage the lean bucket?

Conventional Approach: Averaged \rightarrow Dynamics are $10x$ slower than f_s

Background \rightarrow Benchmarking Bulky PE \rightarrow Lean PE \rightarrow AC PE \rightarrow Results \rightarrow Lean² PE \rightarrow Conclusion

Conventional Approach: Averaged \rightarrow Dynamics are $10x$ slower than f_s

Big bucket can work with slower dynamics

Lean Power Conversion:

Need faster dynamics for lean PE

Could we add regulation to control the flow rate at source/load to manage the lean bucket?

Conventional Approach: Averaged \rightarrow Dynamics are $10x$ slower than f_s

Big bucket can work with slower dynamics

Lean Power Conversion:

Need faster dynamics for lean PE

Could we add regulation to control the flow rate at source/load to manage the lean bucket?

Conventional Approach: Averaged \rightarrow Dynamics are $10x$ slower than f_s

Big bucket can work with slower dynamics

Lean Power Conversion:

Need faster dynamics for lean PE

Could we add regulation to control the flow rate at source/load to manage the lean bucket?
CAPACITOR CHARGE RESTORATION

Boost operation

Ideal case

Real world cases

δ → residue

δ → residue
CAPACITOR CHARGE RESTORATION

Example load interval tuning

Example source interval tuning
Stability Analysis: Variable Structure Systems [7], [8]

Residue δ → $\delta = v_{Cap} - V_N \Rightarrow \dot{\delta} = v_{Cap}$

Corrective action (switching) → $u_\delta = sign(\delta)$

$$\frac{dv_{Cap}}{dt} = v_{Cap} = \dot{\delta} = \frac{dS_i - dL_i}{C}$$

Case 1: Tuning the load interval:

$$\dot{\delta} = \frac{-d_i i_i - d_o i_o}{C} = \frac{-d_i i_i - [d_o + sign(\delta)] i_o}{C}$$

$\Rightarrow \delta \dot{\delta} < 0$ Stable operation!

Case 2: Tuning the source interval:

$$\dot{\delta} = \frac{-d_i i_i - d_o i_o}{C} = \frac{-[d_i + sign(\delta)] i_i - d_o i_o}{C}$$

$\Rightarrow \delta \dot{\delta} > 0$ Unstable operation!
STABILITY - WAVEFORMS

Load interval tuning $\delta\delta < 0$

Source interval tuning $\delta\delta > 0$

Capacitor voltage V_{Cap}

Time (ms)

Source current I_s, Load current I_o
RESULT

Conventional

50% load rejection at 0.1s

Link Voltage v_{Cap}

Currents

$C = 1000\mu F$

$C = 10\mu F$

400 units

4 units

Proposed

Link Voltage v_{Cap}

Currents

$C = 10\mu F$

4 units

Background → Benchmarking Bulky PE → Lean PE → AC PE → Results → Lean² PE → Conclusion
SUMMARY

Background → Benchmarking Bulky PE → Lean PE → AC PE → Results → Lean² PE → Conclusion
EXAMPLE DESIGN
AC CONVERSION SYSTEMS

Coupled Modulation

Conventional

Extension to AC Systems using:

→ Space Vector Diagram
or,
→ 2-Phase Equivalent System Approach
PHOTOVOLTAIC SYSTEM EXAMPLE

<table>
<thead>
<tr>
<th></th>
<th>Conventional PWM [9]</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Inductor ((L_{\text{DC}}))</td>
<td>5mH</td>
<td>5mH</td>
</tr>
<tr>
<td>Link Capacitor ((C))</td>
<td>1000µF</td>
<td>10µF</td>
</tr>
<tr>
<td>Output Inductor ((L_{\text{O}}))*</td>
<td>7.5mH</td>
<td>7.5mH</td>
</tr>
<tr>
<td>Output Capacitor ((C_{\text{O}}))*</td>
<td>0.55µF</td>
<td>0.70µF</td>
</tr>
</tbody>
</table>

* Ripple Current: 3%

- Transformer-less photovoltaic inverters
- L-C output filter meet ripple specifications of 3% ripple current
- 0.33J of energy transfer between source and load in 100µs
- Proposed approach with nominal energy storage of 0.6J at dc link (against 60J with conventional PWM)
PV: SIMULATION WAVEFORMS

Load Resistance

Positive Switch Duty Ratios

Output Currents

Capacitor Voltage VCap

Time (seconds)

100% Δ

1.0

0.5

0.0

2.0

0

-2.0

400

200

0

5.5%

3.2%

2.5%

0.00 0.02 0.04 0.06 0.08 0.10

Sequenced and synchronized connection of source & load

Distinct charge-discharge of ES element

ES element charge restoration

<4% overshoot @ 100% load rejection

High-quality output

<6% ripple @ 2p.u. ES, Rated power

Background → Benchmarking Bulky PE → Lean PE → AC PE → Results → Lean² PE → Conclusion
SiC MOSFET based converter

DC-AC and AC-AC conversion capabilities with up-to 700V dc bus

High common mode immune circuitry
- Negative bias gate driver with isolated bipolar power supplies
- Current sensors
- Mixed signal voltage sensing

8-channel 16-bit Σ-Δ ADC converter

Controller: Xilinx Zedboard

Tested up-to 1.8kW
Background → Benchmarking Bulky PE → Lean PE → AC PE → Results → Lean² PE → Conclusion

Waveforms From Prototype

- **Low frequency waveforms**
- **High frequency waveforms**

Laboratory Setup

Next Step → Lean² PE?
ZERO UNITS ENERGY STORAGE

Rate of flow = f_s

![Diagram of energy storage system](image)

- Source f_s
- Load f_s
- Conventional
- 0 p.u. ES
- ~0.1 µF!

Sets an upper limit of link capacitance!
Background → Benchmarking Bulky PE → Lean PE → AC PE → Results → Lean² PE → Conclusion

ZERO UNITS CONVERTER PROTOTYPE

100W IM Drive
200V 3 Phase ac 400Hz $f_s = 7.8$kHz, $C = 39\text{nF}$

Motor Line Currents

Link Voltage & Input DC Current

39nF!
HIGHLIGHTS

- Enables two orders of reduction in the energy storage requirements of capacitive/inductive elements (0-10 units vs. 100-1000 units) → Highly dense and Lean Power Conversion
- Energy storage elements can be minimally sized ([nF, few µF] vs. [100s µF, mF])
- PE converters can employ film capacitors (vs. electrolytic capacitors)
 - Higher lifespan
 - Lower losses
- Lays the foundation for new directions towards high density power conversion for several applications including wind energy, traction, industrial drives, etc.
REFERENCES

THANK YOU

Questions/Comments?

mahima@pdx.edu

For students: ECE 4/545 Power Electronic Systems Design (Winter term)