
Portland State University

Maseeh College of Engineering and Computer Science

Remotely Administered

Proficiency Examination Process

2021

Important Dates:

Proficiency Demos for Fall 2021 Admission

1. Fall 2021 Admit Proficiency Demo Orientation: Zoom meeting on April 24th

• Zoom ID https://pdx.zoom.us/j/87232714823

2. Practice system available: starting April 24th

3. Proficiency demo administered May 1st by appointment

4. Retakes available via Zoom on May 5th by appointment

https://pdx.zoom.us/j/87232714823

PSU Expectations of Student Competencies

Students that apply to PSU’s Computer Science department for entry into the upper division

program must pass a CS Transfer proficiency examination if they have not taken and passed CS202

at PSU. This examination has students demonstrate their abilities to apply problem solving skills

while programming using the linux environment. Part of this process will have students

implementing data structure algorithms using recursion. Applicants will program independently

while being remotely observed by PSU Faculty and Staff, without any assistance. PSU requires

that applicants program in C++ using GNU’s C++ compiler using C++ ANSI standard 98 on the

linux command line, without the assistance of IDEs or other auxiliary (or online) materials. PSU

expects from the current coursework taken that students should be able to proficiently implement

recursive solutions to data structure problems.

The Value of Proficiency Demonstrations

Proficiency demonstrations are valuable to ensure that students are able to apply the concepts that

have been learned in the 1xx and 2xx programming classes. The proficiency demonstrations have

been found to drastically improve student performance in the upper division. The objective of the

strategy is to minimize individual interactions while still providing quality results. This is done

through a two-step process, starting with an automated tool and continuing with a more traditional

approach in certain situations. Students will be able to optionally practice with the systems

allowing them to get comfortable with the process and/or test the technology required.

Remotely Administered

Traditionally, the proficiency demos were performed live and in-person. Currently, this is not

possible. In the remote environment, we will be meeting with each student by appointment

electronically. These meetings take place using Google Meet. As part of the meeting, students will

be sharing their screen and programming live in front of proctors. Students will need to plan ahead

to make sure they have the necessary hardware, such as a webcam and microphone prior to

demonstration. PSU is available to assist with our loaner programs.

Data Structure Expectations

It is expected that students applying for upper division entry should be proficient in programming

recursive data structures algorithms. Students will be expected to demonstrate programming

proficiency with linear linked lists, circular linked lists, doubly linked lists, arrays of linked lists,

and binary search trees. For the proficiency demonstrations, each of these data structures has

already been created and the applicants are asked to implement an algorithm to traverse and/or

modify the data structure recursive. PSU offers a 1-credit Data Structures Practice lab for students

who have not recently been programming recursive data structures solutions.

The Process

The process of taking the proficiency exam starts with an orientation that includes a linux tutorial

and practice session. The orientation will describe the process and make sure the students are set

up to be able to practice on their own. During orientation, applicants will experiment with the

environment used for the proficiency exam and work through sample problems. Students should

plan to attend the orientation as it provides beneficial information. It should not be skipped. This

will be offered through Zoom and is not recorded. To receive the most benefit, students should

have both a webcam and a microphone.

The actual proficiency exam will take place for all applicants by appointment; the sign-up link will

be provided by the CS Department after they receive applications. During the demonstration,

students will receive a randomly assigned question at that time and be required to demonstrate

programming in C++ implementing a recursive data structures’ algorithm with no additional

external support. These will take place through Google Meet. Students will be given access to a

D2L “course shell” which will provide a sample environment where they can practice.

Programming proficiency is scored based on the process of solving a problem. We examine the

design steps and how the students are able to implement correct syntax based on those steps.

Students are encouraged to compile, run, and debug their software. Passing scores for the

proficiency demonstration are “Exceeds” where the process exceeds our expectations, “Proficient”

where the observed process meets our expectations, and “Proficient with Warning”. With a

warning, students may be asked by the department to take and pass a data structures practice lab

to refine their programming proficiency.

Non-passing scores are “In Progress” and “Unsatisfactory”. Students who receive an “In Progress”

score will be invited to retake the proficiency demo. The retake is performed within a week.

Students must receive a passing score for their applications to be further processed by PSU.

Compiler and Editor Requirements

During the proficiency exam, students will ssh PSU’s linux virtual machine and use the GNU GCC

C++ compiler (g++) in the default –ansi mode. This mode meets the C++ ANSI standard 98

guidelines (which can be obtained through these flags: –std=c++98, -std=gnu++98, or -ansi).

Students should compile with the –Wall flag to enable warnings about constructions that should

be avoided. Students may compile with the –g flag to support the use of gdb. Use of any other

flags is not allowed during the exam. All programming will be done using one of the following

approved editors: vi, vim, emacs, nano or pico. The use of IDEs is not allowed.

Hardware and Software requirements

 To perform proficiency demos, students will need the following hardware and software.

Arrangements can be made with PSU to check-out a chrome book given (~1 week notice).

The hardware requirements include:

1. Webcam

2. Microphone

3. PC, Mac, Chromebook

4. A single monitor (multiple monitors need to be disconnected prior)

5. During the demonstration, your computer will need to be plugged in

The software requirements include:

1. SSH client such as terminal or putty

2. Web browser: Chrome must be used

3. Ability to use Zoom or Google Meet video conferencing software

4. When you login to linux, we expect that you will use at least 14 point font (16 is better);

therefore, learn in advance how to change the font size on terminal or putty

Workspace and System Checks

We recommend planning ahead and setting up the workspace in a private or semi-private area

with minimal distractions. The software works best if there are as few distractions behind you as

possible (e.g. a blank wall, bookcase, etc.).

1. Avoid sitting in front of a window or mirror

2. Virtual backgrounds are not allowed

3. Hats and fullface masks are not allowed

Prior to beginning the proficiency demo, the first 5-10 minutes will be a workspace and systems

check. We recommend performing a power cycle prior to starting the demo.

1. The demo begins by checking your photo ID. Make sure to have your picture ID card

ready to hold up to the webcam. This can be your college ID, a drivers license, a

password, or other official picture identification

2. Next, you will show your workspace. You may need to pick up your laptop or webcam to

show the area as directed by the Proctor

3. The session may be recorded and will be monitored by a Proctor

4. The proficiency examination is “closed book, closed notes”

a. No electronic devices such as phones, smart watches may be used

b. Online access to materials is prohibited

c. Online access is only granted to login to an approved linux system using a terminal

emulation program and Zoom or other remote proctoring software

5. Please be aware that at any time, the Proctor may ask the student to explain their work

Selecting a Question and Beginning:

After the system checks, the next step will be to select a question.

 A test question will be randomly assigned through a D2L shell

a. The first question may be selected or rejected

b. If the first question is rejected, the second question may be selected or rejected

c. If the second question is rejected, the third question must be selected

d. Students may not go back to a previous question

2. After a question is selected, the Proctor will assist the logging onto the MCECS linux testing

system.

a. Once programming has begun, the question cannot be changed

b. Students may use vi, vim, or emacs. In some situations pico or nano will be accepted

c. Students may not use help, man, or any other tool to gain online assistance

d. We recommend commenting out code rather than deleting it

e. Students may write additional functions, but the prototype of the function given must

be unchanged and called directly from main.

f. We suggest writing more than one function if necessary. If more than a single

function is written, main is still required to call the function assigned in the problem.

However, students should minimize extra unnecessary traversals of the data structure.

g. Students are encouraged to compile and run the code multiple times.

h. Students are allowed to debug their programs using gdb.

3. Proficiency Demos will be scored within 60 minutes after starting the test; during the

last 10 minutes, students may be asked to explain their work.

a. When prompted, the student will be asked to submit their work

Proficiency Exam - Rules:

• All problems will require a recursive solution

• NO LOOPS may be used in the solution, unless indicated in the problem statement

• Each problem will be given a specific prototype

• The prototype supplied may not be changed

• Global variables are not allowed

• The prototype supplied represents the function that should be called by main

• For questions that have students count, average, or traverse in some way, the solution

should NOT modify the data structure

• For questions that ask students to insert or copy, the solution should NOT delete items

• As changes are made to the code, please comment out code rather than deleting it!

Proficiency Exams – General Information:

• Students will be demonstrating proficiency in programming in linux and data structures

i. Every student must show proficiency in a high level programming language such as

C++

ii. The examination will have student implement various recursive data structure

algorithms, using pointer based implementations.

iii. All of the coding will be done using linux, with a linux editor (using either

vi, vim, or emacs; pico/nano are allowed but not recommended)

• Every student will also be asked to demonstrate proficiency in using gdb and features of the

linux editor that they are using

i. Students will demonstrate navigation

ii. Students will demonstrate search and replace

iii. Students will demonstrate setting breakpoints in gdb

• The data structures algorithms implemented may include coding recursive traversal and/or

manipulation algorithms for any of the following pointer based data structures:

ii. Linear linked lists

iii. Doubly linked lists

iv. Circular linked lists

v. Binary search trees

vi. Arrays of linear linked lists

• The data in the data structures may be an integer or a dynamically allocated array

of characters.

• Students should be comfortable working within the class construct without the use of an IDE,

working with .h file(s) and multiple .cpp files.

• Students are encouraged to practice prior to the proficiency exam.

Proficiency Exam – Sample Practice Questions:

A complete environment will be provided by PSU that already creates and populates the data

structure with data. The data may be integer data or dynamically allocated arrays of characters.

Students will be implementing specific functions to perform a task which will then be linked with

code to build, display, and destroy the data structure assigned.

Linear linked lists, circular and doubly linked lists:

1. Write a recursive function in C++ to remove all nodes except for the first and last nodes.

2. Write a recursive function in C++ to remove the last two nodes

3. Write a recursive function in C++ to add a node to the end, if it is unique

4. Write a recursive function in C++ to move the last node to the beginning

5. Write a recursive function in C++ to copy the data structure

Array of Linear linked lists:

1. Write a recursive function in C++ to remove all nodes in the last linear linked list

2. Write a recursive function in C++ to count the number of 2’s in the data structure

Binary search trees:

1. Write a recursive function in C++ to make a copy of a binary search tree

2. Write a recursive function in C++ to make a copy of a binary search tree and place it in a

linear linked list, sorted

3. Write a recursive function in C++ to take a sorted array and insert it into a binary search

tree balanced

4. Write a recursive function in C++ to add a node into a binary search tree

5. Write a recursive function in C++ to remove the largest item in a binary search tree

6. Write a recursive function in C++ to find the root’s in-order successor

Appendix: Expected Core Competencies

PSU expects that students applying for entrance into the upper division be able to write complete

programs in C++, using multiple files (.cpp and .h files) implementing pointer based data structure

solutions, without the use of external libraries to assist with the data structures. Students should be

competent using the linux environment without the assistance of an IDE, the internet, or external

library support (beyond iostream, string and/or cstring libraries). Students should be fluent with

the use of arguments (both pass by value and pass by reference) without using global variables.

When examining fluency, students should be able to develop code that is free from segmentation

faults, memory leaks, and properly use recursion in the solution. The use of debuggers, such as

gdb, is highly encouraged. Correct syntax is expected.

PSU expects students to show fluency with C++ pointer based data structure solutions. This

includes recursive solutions for linear linked lists, circular linked lists, doubly linked lists, and

arrays of linked lists and binary search trees; students are expected by this time to be fluent with

linux editor functionality (search, replace, navigation) and gdb, implementing recursive solutions

for problems similar to these (for example):

• Linear Linked list: Determine if there are duplicate data within an existing linked lists.

• Circular Linked list: Remove every occurrence of a particular item

• Doubly Linked list: Swap every other node

• Array of linked lists: Remove the last item in each linear linked list

• Binary Search Tree: Return the largest item in a binary search tree

The only libraries available during the proficiency exam are:

• iostream, fstream

• cctype, cstring

Background Competencies from CS162, CS163, and CS202

Once applicants have taken CS162, PSU expects proficiency with the fundamental syntax of C++.

Students should be proficient programming using pointers, dynamic memory, and linear linked

lists. PSU expects that students passing CS162 are able to show fluency with pointer based linear

linked list solutions. Students passing CS162 demonstrate fluency at problems such as (for

example):

• Adding a node at the end of a linear linked list

• Counting the number of nodes in a linear linked list

• Finding how many times a matching item appears in a linear linked list

• Removing an item from a linear linked list

Once applicants have taken CS163 (Data Structures), PSU expects proficiency applying recursion

to data structure algorithms. This includes being fluent using functions, including the returned

value of the function and returning values when appropriate. PSU expects students passing CS163

are able to show fluency with recursive pointer based data structure solutions. Students passing

CS163 are able to show fluency using recursive solutions for linked data structures (linear, circular

and doubly linked), and pointer based binary search trees. Students should be fluent at problems

such as (for example):

• Remove every leaf from a binary search tree

• Return the largest item in a binary search tree

• Calculate the height of a binary search tree

• Finding how many times a matching item appears in a binary search tree

Once applicants have taken the equivalent of CS202, PSU expects fluency programming in C++

using classes, pointers and dynamic memory (new and delete), functions (using returned values,

passing by value and passing by reference), and recursive solutions to pointer based linked data

structures. Students should be able to demonstrate proficiency at applying recursive solutions to

insert, traverse or remove from pointer based linked data structures of: linear linked lists, circular

linked lists, doubly linked lists, arrays of linked lists, and binary search trees.

Applicants should have experience implementing OOP designs using concepts such as multiple

classes, inheritance, dynamic binding, copy constructors, initialization lists, and operator

overloading, by working at the command line and without an IDE. Applicants should have hands

on implementation experience combining of data structures such as lists of trees, trees of trees,

arrays of lists, balanced tree and graph implementations.

Applicants should also have been trained on the process of learning new programming languages

that may be expected by the Professors of the upper division courses. Applicants should be

prepared to demonstrate how to apply the concepts of inheritance, dynamic binding, and advanced

data structures to other languages such as Java.

