Probability Handout

Important Information

$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	Addition Rule
$P(A \cap B) = P(A) \cdot P(B)$	Independent Events
$P(A \cap B) = 0$	Mutually Exclusive Events
$P(B A) = P(A \cap B)/P(A)$	Conditional Probability
$P(A^C) = 1 - P(A)$	Complement Rule
$P([A \cup B]^C) = P(A^C \cap B^C)$	De Morgan's Law
$P([A \cap B]^C) = P(A^C \cup B^C)$	De Morgan's Law
The probability of any event E is such that	$0 \le P(E) \le 1$
The sum of the probabilities of the outcomes	in the sample space equals 1.
num of successes / num of possible outcomes	Classical Probability

Uniform Distribution

$$P(a \le X \le x) = \frac{x-a}{b-a}$$

$$P(x \le X \le b) = \frac{b-x}{b-a}$$

$$a = \text{left endpoint}$$

$$b = \text{right endpoint}$$

$$\mu = \frac{a+b}{2}$$

$$\sigma^2 = \frac{(b-a)^2}{12}$$

Binomial Distribution

 $P(X = x) = {}_{n}C_{x} \cdot p^{x}q^{n-x}$ n = number of trials x = number of successes p =probability of success q = probability of failure $\mu = np$ $\sigma^2 = npq$

Events are independent Two possible outcomes

Set number of trials

Exponential Distribution

$$P(0 \le X \le x) = 1 - e^{-\lambda x}$$

$$P(X \ge x) = e^{-\lambda x}$$

$$x = \text{time between events}$$

$$\mu = 1/\lambda$$

$$\sigma^2 = 1/\lambda^2$$

P

Important Formulas

$$n! = n(n-1)(n-2)\cdots 2 \cdot 1$$

$$0! = 1$$

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

$${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$\mu = E(X) = \sum xP(x)$$

$$\sigma^{2} = E(X^{2}) - \mu^{2} = \sum x^{2}P(x) - \mu^{2}$$

Sum of Dice Table

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Poisson Distribution

 $P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$ x = number of occurrences in an interval of time, area, etc. e = 2.71828 $\mu = \lambda$ $\sigma^2 = \lambda$

Uupongoomotria Distribution

Hypergeometric Distribution

$$(X = x) = \frac{aC_x \cdot bC_{n-x}}{a+bC_n}$$
 $n = \text{number of trials}$
 $x = \text{number of successes}$
 $a = \text{total number of successes}$
 $b = \text{total number of failures}$
 $\mu = n\left(\frac{a}{a+b}\right)$
 $\sigma^2 = n\left(\frac{a}{a+b}\right)\left(1-\frac{a}{a+b}\right)\left(\frac{a+b-n}{a+b-1}\right)$

Selection is done **without** replacement Two types of objects

